A provisional solution to the normal Moore space problem
HTML articles powered by AMS MathViewer
- by Peter J. Nyikos
- Proc. Amer. Math. Soc. 78 (1980), 429-435
- DOI: https://doi.org/10.1090/S0002-9939-1980-0553389-4
- PDF | Request permission
Abstract:
The Product Measure Extension Axiom (PMEA), whose consistency would follow from the existence of a strongly compact cardinal, implies that every normalized collection of sets in a space of character less than the continuum is well separated. Consistency of PMEA would thus solve many well-known problems of general topology, including that of whether every first countable normal space is collectionwise normal, as well as the normal Moore space problem.References
- P. S. Alexandroff, On the metrization of topological spaces, Bull. Acad. Polon. Sci. Ser. Math. Astronom. Phys. 8 (1968), 135-140. (Russian)
A. V. Arhangel’skiĭ, On mappings of metric spaces, Soviet Math. Dokl. 3 (1962), 953-956.
- R. H. Bing, Metrization of topological spaces, Canad. J. Math. 3 (1951), 175–186. MR 43449, DOI 10.4153/cjm-1951-022-3
- Eduard Čech, Topological spaces, Publishing House of the Czechoslovak Academy of Sciences, Prague; Interscience Publishers John Wiley & Sons, London-New York-Sydney, 1966. Revised edition by Zdeněk Frolík and Miroslav Katětov; Scientific editor, Vlastimil Pták; Editor of the English translation, Charles O. Junge. MR 0211373
- J. Chaber, On point-countable collections and monotonic properties, Fund. Math. 94 (1977), no. 3, 209–219. MR 451206, DOI 10.4064/fm-94-3-209-219
- Geoffrey D. Creede, Concerning semi-stratifiable spaces, Pacific J. Math. 32 (1970), 47–54. MR 254799 F. R. Drake, Set theory, North-Holland, Amsterdam, 1974.
- Ryszard Engelking, Topologia ogólna, Biblioteka Matematyczna [Mathematics Library], vol. 47, Państwowe Wydawnictwo Naukowe (PWN), Warsaw, 1975 (Polish). MR 0500779
- William Fleissner, Normal Moore spaces in the constructible universe, Proc. Amer. Math. Soc. 46 (1974), 294–298. MR 362240, DOI 10.1090/S0002-9939-1974-0362240-4
- William G. Fleissner, An introduction to normal Moore spaces in the constructible universe, Topology Proceedings, Vol. I (Conf., Auburn Univ., Auburn, Ala., 1976) Math. Dept., Auburn Univ., Auburn, Ala., 1977, pp. 47–55. MR 0464175
- Paul R. Halmos, Measure Theory, D. Van Nostrand Co., Inc., New York, N. Y., 1950. MR 0033869
- R. W. Heath, Screenability, pointwise paracompactness, and metrization of Moore spaces, Canadian J. Math. 16 (1964), 763–770. MR 166760, DOI 10.4153/CJM-1964-073-3
- R. E. Hodel, Some results in metrization theory, 1950–1972, Topology Conference (Virginia Polytech. Inst. and State Univ., Blacksburg, Va., 1973) Lecture Notes in Math., Vol. 375, Springer, Berlin, 1974, pp. 120–136. MR 0355986
- F. B. Jones, Concerning normal and completely normal spaces, Bull. Amer. Math. Soc. 43 (1937), no. 10, 671–677. MR 1563615, DOI 10.1090/S0002-9904-1937-06622-5
- Mary Ellen Rudin, The metrizability of normal Moore spaces, Studies in topology (Proc. Conf., Univ. North Carolina, Charlotte, N.C., 1974; dedicated to Math. Sect. Polish Acad. Sci.), Academic Press, New York, 1975, pp. 507–516. MR 0358711
- Mary Ellen Rudin, Lectures on set theoretic topology, Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 23, Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society, Providence, R.I., 1975. Expository lectures from the CBMS Regional Conference held at the University of Wyoming, Laramie, Wyo., August 12–16, 1974. MR 0367886
- Frank Siwiec, On defining a space by a weak base, Pacific J. Math. 52 (1974), 233–245. MR 350706
- Frank Siwiec, Generalizations of the first axiom of countability, Rocky Mountain J. Math. 5 (1975), 1–60. MR 358699, DOI 10.1216/RMJ-1975-5-1-1
- Robert M. Solovay, Real-valued measurable cardinals, Axiomatic Set Theory (Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967) Amer. Math. Soc., Providence, R.I., 1971, pp. 397–428. MR 0290961
- L. A. Steen, Conjectures and counterexamples in metrization theory, Amer. Math. Monthly 79 (1972), 113–132. MR 309075, DOI 10.2307/2316532
- Franklin D. Tall, A set-theoretic proposition implying the metrizability of normal Moore spaces, Proc. Amer. Math. Soc. 33 (1972), 195–198. MR 300239, DOI 10.1090/S0002-9939-1972-0300239-2
- F. D. Tall, Set-theoretic consistency results and topological theorems concerning the normal Moore space conjecture and related problems, Dissertationes Math. (Rozprawy Mat.) 148 (1977), 53. MR 454913
- J. M. Worrell Jr. and H. H. Wicke, Characterizations of developable topological spaces, Canadian J. Math. 17 (1965), 820–830. MR 182945, DOI 10.4153/CJM-1965-080-3
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 78 (1980), 429-435
- MSC: Primary 54E30; Secondary 03E35, 54A35
- DOI: https://doi.org/10.1090/S0002-9939-1980-0553389-4
- MathSciNet review: 553389