Differentiable decompositions of manifolds into totally $C^{\infty }$-path disconnected subsets
HTML articles powered by AMS MathViewer
- by M. V. Mielke
- Proc. Amer. Math. Soc. 78 (1980), 439-442
- DOI: https://doi.org/10.1090/S0002-9939-1980-0553391-2
- PDF | Request permission
Abstract:
For ${C^\infty }$-manifolds M, N, the set of all ${C^s}$-maps $M \to N$ with totally ${C^\infty }$-path disconnected fibers is shown to be dense in the set of all ${C^s}$-maps $M \to N$, if $\dim N > 0$.References
- R. D. Anderson, On collections of pseudo-arcs, Bull. Amer. Math. Soc. 56 (1950), 350.
- J. Dieudonné, Foundations of modern analysis, Pure and Applied Mathematics, Vol. X, Academic Press, New York-London, 1960. MR 0120319
- Wayne Lewis and John J. Walsh, A continuous decomposition of the plane into pseudo-arcs, Houston J. Math. 4 (1978), no. 2, 209–222. MR 482693
- M. V. Mielke, Sectional representation of multitopological spaces relative to a family of smoothness categories, Illinois J. Math. 23 (1979), no. 1, 58–70. MR 516570, DOI 10.1215/ijm/1256048317
- James R. Munkres, Elementary differential topology, Annals of Mathematics Studies, No. 54, Princeton University Press, Princeton, N.J., 1963. Lectures given at Massachusetts Institute of Technology, Fall, 1961. MR 0163320, DOI 10.1515/9781400882656
- Shlomo Sternberg, Lectures on differential geometry, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR 0193578 G. S. Ungar, Fiber spaces with totally path disconnected fiber, Ann. of Math. Studies, no. 60, Princeton, N. J., 1960, pp. 235-240.
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 78 (1980), 439-442
- MSC: Primary 57R22; Secondary 54C05, 58D15
- DOI: https://doi.org/10.1090/S0002-9939-1980-0553391-2
- MathSciNet review: 553391