The length spectrum of a Riemann surface is always of unbounded multiplicity
HTML articles powered by AMS MathViewer
- by Burton Randol
- Proc. Amer. Math. Soc. 78 (1980), 455-456
- DOI: https://doi.org/10.1090/S0002-9939-1980-0553396-1
- PDF | Request permission
Abstract:
I show that the length spectrum of a Riemann surface is always of unbounded multiplicity, and indicate connections with recent work of Guillemin and Kazhdan.References
- R. Abraham, Bumpy metrics, Global Analysis (Proc. Sympos. Pure Math., Vols. XIV, XV, XVI, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 1–3. MR 0271994
- M. Dehn, Transformation der Kurven auf zweiseitigen Flächen, Math. Ann. 72 (1912), no. 3, 413–421 (German). MR 1511705, DOI 10.1007/BF01456725
- Martin Greendlinger, On Dehn’s algorithms for the conjugacy and word problems, with applications, Comm. Pure Appl. Math. 13 (1960), 641–677. MR 125020, DOI 10.1002/cpa.3160130406 V. Guillemin and D. Kazhdan, Some inverse spectral results for negatively curved two-manifolds (preprint).
- Robert D. Horowitz, Characters of free groups represented in the two-dimensional special linear group, Comm. Pure Appl. Math. 25 (1972), 635–649. MR 314993, DOI 10.1002/cpa.3160250602
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 78 (1980), 455-456
- MSC: Primary 58G25; Secondary 30F10, 53C22
- DOI: https://doi.org/10.1090/S0002-9939-1980-0553396-1
- MathSciNet review: 553396