An improved estimate for certain Diophantine inequalities
HTML articles powered by AMS MathViewer
- by Ming Chit Liu, Shu Ming Ng and Kai Man Tsang
- Proc. Amer. Math. Soc. 78 (1980), 457-463
- DOI: https://doi.org/10.1090/S0002-9939-1980-0556611-3
- PDF | Request permission
Abstract:
Let ${\lambda _1}, \ldots ,{\lambda _8}$ be any nonzero real numbers such that not all ${\lambda _j}$ are of the same sign and not all ratios ${\lambda _j}/{\lambda _k}$ are rational. If $\eta ,\alpha$ are any real numbers with $0 < \alpha < 3/70$ then $|\eta + \Sigma _{j = 1}^8{\lambda _j}n_j^3| < {(\max {n_j})^{ - \alpha }}$ has infinitely many solutions in positive integers ${n_j}$.References
- A. Baker, On some diophantine inequalities involving primes, J. Reine Angew. Math. 228 (1967), 166–181. MR 217016, DOI 10.1515/crll.1967.228.166
- R. J. Cook, Diophantine inequalities with mixed powers, J. Number Theory 9 (1977), no. 1, 142–152. MR 432540, DOI 10.1016/0022-314X(77)90057-9
- I. Danicic, The solubility of certain Diophantine inequalities, Proc. London Math. Soc. (3) 8 (1958), 161–176. MR 96636, DOI 10.1112/plms/s3-8.2.161
- H. Davenport and H. Heilbronn, On indefinite quadratic forms in five variables, J. London Math. Soc. 21 (1946), 185–193. MR 20578, DOI 10.1112/jlms/s1-21.3.185
- H. Davenport and K. F. Roth, The solubility of certain Diophantine inequalities, Mathematika 2 (1955), 81–96. MR 75989, DOI 10.1112/S0025579300000723 G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 4th ed., Oxford Univ. Press, New York and London, 1960.
- Kee Wai Lau and Ming Chit Liu, Linear approximation by primes, Bull. Austral. Math. Soc. 19 (1978), no. 3, 457–466. MR 536895, DOI 10.1017/S0004972700008984
- Ming Chit Liu, Approximation by a sum of polynomials involving primes, J. Math. Soc. Japan 30 (1978), no. 3, 395–412. MR 485751, DOI 10.2969/jmsj/03030395
- K. Ramachandra, On the sums $\sum _{j=1}^{K}\,\lambda _{j}\,f_{j}(p_{j})$, J. Reine Angew. Math. 262(263) (1973), 158–165. MR 327660, DOI 10.1515/crll.1973.262-263.158
- Wolfgang Schwarz, Über die Lösbarkeit gewisser Ungleichungen durch Primzahlen, J. Reine Angew. Math. 212 (1963), 150–157 (German). MR 191883, DOI 10.1515/crll.1963.212.150
- R. C. Vaughan, Diophantine approximation by prime numbers. I, Proc. London Math. Soc. (3) 28 (1974), 373–384. MR 337812, DOI 10.1112/plms/s3-28.2.373
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 78 (1980), 457-463
- MSC: Primary 10B45; Secondary 10F05
- DOI: https://doi.org/10.1090/S0002-9939-1980-0556611-3
- MathSciNet review: 556611