THE NONEXISTENCE OF INVARIANT UNIVERSAL MEASURES ON SEMIGROUPS

V. KANNAN AND S. RADHAKRISHNESWARA RAJU

Abstract. We prove that if \(S \) is an uncountable subsemigroup of a group, then every (left or right)-translation invariant \(\sigma \)-finite measure defined on all subsets of \(S \) must be trivial. This answers a question posed by Ryll-Nardzewski and Telgarsky.

A universal measure on a set is, by definition, a (countably-additive, positive, extended real-valued) measure defined on all subsets of that set. A measure \(\mu \) on \((X, \Sigma)\) is said to be semiregular, if whenever \(A \in \Sigma \) and \(\mu(A) > 0 \), there is \(B \in \Sigma \) such that \(B \subseteq A \) and such that \(0 < \mu(B) < \infty \). It is easily seen that every \(\sigma \)-finite measure is semiregular. We start with a Proposition that will be heavily used in our Theorem. \(\aleph_1 \) denotes the first uncountable cardinal number.

Proposition. Every universal semiregular measure is \(\aleph_1 \)-additive.

Proof. Let us recall the definition of \(\aleph_1 \)-additivity. This means that whenever \(\{A_\alpha: \alpha \in J\} \) is a class of pairwise disjoint measurable sets and \(|J| = \aleph_1\) and if \(A = \bigcup \{A_\alpha: \alpha \in J\} \) is measurable, then it is true that the measure of \(A \) is equal to the sum of the measures of \(A_\alpha \)'s. If \(\mu \) is the measure, what we demand is \(\mu(A) = \sum_{\alpha \in J} \mu(A_\alpha) \), the sum on the right being defined in the most natural way, as

\[
\sup \left\{ \sum_{\alpha \in F} \mu(A_\alpha): F \text{ is a finite subset of } J \right\}.
\]

To prove the Proposition, let \(\mu \) be a universal semiregular measure on a set \(X \), let \(J \) be an index set with cardinality \(\aleph_1 \), let \(\{A_\alpha: \alpha \in J\} \) be a family of pairwise disjoint subsets of \(X \) indexed by \(J \) and let \(A \) be their union. We have to prove that

\[
\mu(A) = \sum_{\alpha \in J} \mu(A_\alpha). \tag{1}
\]

Case 1. Let \(\mu(A_\alpha) = 0 \) for every \(\alpha \in J \). Then we claim that \(\mu(A) = 0 \). If not, by the semiregularity of \(\mu \), there is some \(B \subseteq A \) such that \(0 < \mu(B) < \infty \). Define a measure \(\nu \) on the index set \(J \) by the rule

\[
\nu(E) = \mu\left(\bigcup_{\alpha \in E} B \cap A_\alpha \right)
\]

It is easily checked that \(\nu \) is also countably additive. In fact it is a universal measure on \(J \) satisfying \(\nu(J) = \mu(B) \) and hence \(0 < \nu(J) < \infty \). Further if \(\alpha \in J \) is...
any element, we have

\[\nu(\{\alpha\}) = \mu(B \cap A_\alpha) \leq \mu(A_\alpha) = 0. \]

Since \(J \) is of cardinality \(\aleph_1 \), this contradicts a well-known theorem of Ulam (see [O, Theorem 5.6, p. 25]). This contradiction proves that \(\mu(A) \) should be zero.

Case 2. Let \(\mu(A_\alpha) > 0 \) for uncountably many \(\alpha \) in \(J \). Then \(\sum_{\alpha \in J} \mu(A_\alpha) \) has to be \(\infty \). Further, there is a positive integer \(n \) such that \(\mu(A_\alpha) > \frac{1}{n} \) for infinitely many (in fact, uncountably many) \(\alpha \) in \(J \). Since \(A \) contains all these \(A_\alpha \)'s, the countable additivity of \(\mu \) implies that \(\mu(A) \) is also \(\infty \). Thus the equality (1) is valid in this case also.

Case 3. Let \(J_1 = \{\alpha \in J: \mu(A_\alpha) > 0\} \) and let \(J_1 \) be countable. Let \(B = \bigcup_{\alpha \in J_1} A_\alpha \). Then we have

\[
\mu(A) = \mu(B) + \mu(A \setminus B)
\]

\[
= \sum_{\alpha \in J_1} \mu(A_\alpha) + \mu(A \setminus B)
\]

by countable additivity

\[
= \sum_{\alpha \in J_1} \mu(A_\alpha) + 0
\]

by Case 1, since

\[A \setminus B = \bigcup \{A_\alpha: \alpha \in J \setminus J_1\} \]

and since \(\mu(A_\alpha) = 0 \forall \alpha \in J \setminus J_1 \)

\[= \sum_{\alpha \in J} \mu(A_\alpha) \quad \text{since} \quad \mu(A_\alpha) = 0 \forall \alpha \in J \setminus J_1. \]

Thus the Proposition is proved.

Theorem. Let \(S \) be an uncountable semigroup embeddable in a group. Let \(\mu \) be a \(\sigma \)-finite universal right translation-invariant measure on \(S \). Then \(\mu = 0 \).

Proof. Let \(G \) be a group in which \(S \) is embedded as a subsemigroup. Let \(E \) be any subset of \(S \) having cardinality \(\aleph_1 \). Let \(H \) be the subgroup of \(G \) generated by \(E \). Let \(A \) be a subset of \(G \) meeting each left coset of \(H \) in \(G \), in exactly one point. Then one easily verifies that \(Ax \) and \(Ay \) are disjoint, whenever \(x \) and \(y \) are distinct elements of \(H \). Let

\[A_x = (Ax) \cap S \quad \text{(2)} \]

for every \(x \) in \(H \). Then we have

\[S = \bigcup \{A_x: x \in H\} \quad \text{(3)} \]

because we have \(G = \bigcup \{Ax: x \in H\} \). Thus (3) represents \(S \) as the union of a class of pairwise disjoint sets, indexed by the set \(H \) having cardinality \(\aleph_1 \). Since \(\mu \) is \(\sigma \)-finite and hence semiregular, the previous Proposition applies. Thus, we have

\[\mu(S) = \sum_{x \in H} \mu(A_x). \quad \text{(4)} \]

Now consider two cases.

Case 1. Let \(\mu(A_x) = 0 \) for every \(x \) in \(H \). Then by (4) we have \(\mu(S) = 0 \) and thus the result is proved in this case.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Case 2. Let $\mu(A_x) > 0$ for some x in H. Now if y is any element of E, we have

$$A_x y = (A x \cap S)y = (A xy) \cap S y$$

$$\subset A xy \cap S$$ since S is closed under multiplication and $y \in S$

$$= A_{xy}$$

and therefore $\mu(A_{xy}) > 0$ by our assumption in this case. Thus $\{A_{xy} : y \in E\}$ is a collection of pairwise disjoint subsets of S indexed by a set of cardinality \aleph_1, such that every member in this collection has positive measure. This contradicts the assumption that μ is σ-finite. Hence Case 2 does not arise at all.

Corollary. Let S be an uncountable commutative cancellative semigroup. Then every σ-finite translation-invariant universal measure on S is trivial.

Proof. Every such semigroup can be embedded in a group and therefore our Theorem applies.

Remarks. The above Corollary answers a question posed in [R-T]. The special case of the above Theorem, where S itself is assumed to be a group, has been proved first in [E-M] and then by a different method in [R-T].

We conclude with the following open question.

Problem. Is every translation-invariant universal semiregular measure on a group necessarily a multiple of the counting measure?

References

University of Hyderabad, Nampally Station Road, Hyderabad 500 001, India

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use