Finite-dimensional Banach spaces with a.e. differentiable metric projection
HTML articles powered by AMS MathViewer
- by Theagenis Abatzoglou
- Proc. Amer. Math. Soc. 78 (1980), 492-496
- DOI: https://doi.org/10.1090/S0002-9939-1980-0556619-8
- PDF | Request permission
Abstract:
We prove that in a finite-dimensional Banach space, where the Hessian of the norm square is positive definite on the whole space, except possibly at 0, the metric projection onto any closed set is differentiable a.e.References
- A. D. Alexandrov, Almost everywhere existence of the second differential and some properties of convex surfaces connected with it, Leningrad State Univ. Ann. Math. Ser. 6 (1939), 3-35. MR 2, 155.
- Edgar Asplund, Differentiability of the metric projection in finite-dimensional Euclidean space, Proc. Amer. Math. Soc. 38 (1973), 218–219. MR 310150, DOI 10.1090/S0002-9939-1973-0310150-X
- Herbert Busemann, Convex surfaces, Interscience Tracts in Pure and Applied Mathematics, no. 6, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. MR 0105155
- Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR 0257325 S. P. Fitzpatrick, Personal communication.
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 78 (1980), 492-496
- MSC: Primary 41A50; Secondary 41A65
- DOI: https://doi.org/10.1090/S0002-9939-1980-0556619-8
- MathSciNet review: 556619