## Smoothness and weak$^{\ast }$ sequential compactness

HTML articles powered by AMS MathViewer

- by James Hagler and Francis Sullivan PDF
- Proc. Amer. Math. Soc.
**78**(1980), 497-503 Request permission

## Abstract:

If a Banach space*E*has an equivalent smooth norm, then every bounded sequence in ${E^\ast }$ has a ${\text {weak}^\ast }$ converging subsequence. Generalizations of this result are obtained.

## References

- Edgar Asplund,
*Fréchet differentiability of convex functions*, Acta Math.**121**(1968), 31–47. MR**231199**, DOI 10.1007/BF02391908 - Errett Bishop and R. R. Phelps,
*The support functionals of a convex set*, Proc. Sympos. Pure Math., Vol. VII, Amer. Math. Soc., Providence, R.I., 1963, pp. 27–35. MR**0154092**
E. Cech and B. Pospisil, - J. Hagler and W. B. Johnson,
*On Banach spaces whose dual balls are not weak* sequentially compact*, Israel J. Math.**28**(1977), no. 4, 325–330. MR**482086**, DOI 10.1007/BF02760638 - J. Hagler and E. Odell,
*A Banach space not containing $l_{1}$ whose dual ball is not weak* sequentially compact*, Illinois J. Math.**22**(1978), no. 2, 290–294. MR**482087**, DOI 10.1215/ijm/1256048738 - Richard Haydon,
*On Banach spaces which contain $l^{1}(\tau )$ and types of measures on compact spaces*, Israel J. Math.**28**(1977), no. 4, 313–324. MR**511799**, DOI 10.1007/BF02760637 - K. John and V. Zizler,
*On rough norms on Banach spaces*, Comment. Math. Univ. Carolin.**19**(1978), no. 2, 335–349. MR**500126** - Victor Klee,
*Some new results on smoothness and rotundity in normed linear spaces*, Math. Ann.**139**(1959), 51–63 (1959). MR**115076**, DOI 10.1007/BF01459822 - D. G. Larman and R. R. Phelps,
*Gâteaux differentiability of convex functions on Banach spaces*, J. London Math. Soc. (2)**20**(1979), no. 1, 115–127. MR**545208**, DOI 10.1112/jlms/s2-20.1.115 - E. B. Leach and J. H. M. Whitfield,
*Differentiable functions and rough norms on Banach spaces*, Proc. Amer. Math. Soc.**33**(1972), 120–126. MR**293394**, DOI 10.1090/S0002-9939-1972-0293394-4 - R. R. Phelps,
*Support cones in Banach spaces and their applications*, Advances in Math.**13**(1974), 1–19. MR**338741**, DOI 10.1016/0001-8708(74)90062-0
—, - Haskell P. Rosenthal,
*A characterization of Banach spaces containing $l^{1}$*, Proc. Nat. Acad. Sci. U.S.A.**71**(1974), 2411–2413. MR**358307**, DOI 10.1073/pnas.71.6.2411 - Haskell P. Rosenthal,
*Some recent discoveries in the isomorphic theory of Banach spaces*, Bull. Amer. Math. Soc.**84**(1978), no. 5, 803–831. MR**499730**, DOI 10.1090/S0002-9904-1978-14521-2 - Charles Stegall,
*The Radon-Nikodým property in conjugate Banach spaces. II*, Trans. Amer. Math. Soc.**264**(1981), no. 2, 507–519. MR**603779**, DOI 10.1090/S0002-9947-1981-0603779-1 - S. L. Trojanski,
*An example of a smooth space whose dual is not strictly normed*, Studia Math.**35**(1970), 305–309 (Russian). MR**271708**

*Sur les espaces compacts*, Publ. Fac. Sci. Univ. Masaryk

**258**(1938), 1-14.

*Convex functions on real Banach spaces*, unpublished lecture notes.

## Additional Information

- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**78**(1980), 497-503 - MSC: Primary 46B05
- DOI: https://doi.org/10.1090/S0002-9939-1980-0556620-4
- MathSciNet review: 556620