THE EXTENSION OF H^p-FUNCTIONS FROM CERTAIN HYPERSURFACES OF A POLYDISC

SERGIO E. ZARANTONELLO

ABSTRACT. Let E be a subvariety of the open unit polydisc U^n, $n > 2$, of pure dimension $n-1$, satisfying the following conditions. There exists an annular domain $Q^n = \{(z_1, \ldots, z_n) \in \mathbb{C}^n: r < |z_i| < 1, 1 < i < n\}$, a continuous function $\eta: [r, 1) \to [r, 1)$, and a $\delta > 0$, such that

(i) $|z_n| < \eta((|z_1| + \cdots + |z_{n-1}|)/(n-1))$ whenever $(z_1, \ldots, z_n) \in E \cap Q^n$,
(ii) $|\alpha - \beta| > \delta$ whenever $1 < j < n$ and $(\xi', \alpha, \xi'') \neq (\xi', \beta, \xi'')$ are both in $(Q^{n-1} \times U \times Q^{n-1}) \cap E$.

Theorem. Let $0 < p < \infty$, let g be holomorphic on E and let u be the real part of a holomorphic function on E. If $|g(z)|^p < u(z)$ for all $z \in E$, then g can be extended to a function in the Hardy space $H^p(U^n)$.

In this article a set of conditions is given under which it is possible to extend H^p-functions from codimension-1 subvarieties of a polydisc. These conditions are essentially the same as those given by P. S. Chee ([2, Theorem 4.1, p. 111]) for the extension of H^∞-functions, thereby providing a somewhat complete story in so far as all p, $0 < p < \infty$, is concerned.

The notation will be as in [2]. If $0 < r < 1$ then $U(r) = \{z \in \mathbb{C}: |z| < r\}$, if $0 < r < s$ then $Q(r, s) = \{z \in \mathbb{C}: r < |z| < s\}$. We write $U = U(1)$ and denote by T its boundary, the unit circle. The cartesian product of n copies of a set $S \subset \mathbb{C}$ will be represented by S^n, in particular, U^n will be the open unit polydisc, and T^n the unit n-torus. By a polydomain in \mathbb{C}^n we mean a cartesian product of n open connected subsets of \mathbb{C}.

Let Ω be a polydomain in \mathbb{C}^n and let $p \in (0, \infty)$. The Hardy space $H^p(\Omega)$ consists of all holomorphic functions f on Ω such that $|f|^p$ has an n-harmonic majorant on Ω. We denote the class of bounded holomorphic functions on Ω by $H^\infty(\Omega)$.

Fix $\xi_0 \in \Omega$. If $f \in H^p(\Omega)$, and if u is the least n-harmonic majorant of $|f|^p$ on Ω, we write

$$||f||_{H^p(\Omega)} = u(\xi_0)^{1/p}.$$

As is well known, $|| \cdot ||_{H^p(\Omega)}$ endows $H^p(\Omega)$ with the structure of a Banach or Frechet space, depending on whether $1 < p < \infty$ or $0 < p < 1$. The topology of $H^p(\Omega)$ is stronger than that of local uniform convergence in Ω. Furthermore, the choice of ξ_0 is immaterial, for if we fix p and vary ξ_0, the corresponding "norms" define equivalent structures.

Received by the editors July 19, 1978 and, in revised form, May 25, 1979.

Key words and phrases. Polydisc, Hardy space, subvariety.
For the remainder of the paper, $\rho \in (0, \infty)$ and $n \geq 2$ will be fixed.

Our first step is to prove H^p versions of Lemmas 1 and 2 of [1]. Fix $0 < r < 1$ and write $Q = Q(r, 1)$. If h is holomorphic on Q and has a Laurent expansion $h(z) = \sum_{n=\infty}^{+\infty} c(m)z^m$, we define Πh by $\Pi h(z) = \sum_{n=-\infty}^{-1} c(m)z^m$. If h is holomorphic on Q^n and has a Laurent expansion

$$h(z_1, \ldots, z_n) = \sum c(m_1, \ldots, m_n)z_1^{m_1}\cdots z_n^{m_n},$$

we define $\Pi_j h$, $1 < j < n$, to be the holomorphic function whose Laurent series is obtained by deleting above all terms in which $m_j > 0$.

1. **Lemma.** There exists a constant K such that

$$\|\Pi h\|_{H^p(Q)} \leq K\|h\|_{H^p(Q)}$$

for all $h \in H^p(Q)$.

Proof. Clearly, Π is a continuous linear operator with respect to the topology of local uniform convergence in Q. Also ([3, Theorem 10.12, p. 181]) $\Pi h \in H^p(Q)$ whenever $h \in H^p(Q)$. The Closed Graph Theorem then implies that Π is a bounded operator on $H^p(Q)$, completing the proof.

2. **Lemma.** There exists a constant K such that

$$\|\Pi_j h\|_{H^p(Q^n)} \leq K\|h\|_{H^p(Q^n)}$$

for all $h \in H^p(Q^n)$ and $1 < j < n$.

Proof. Fix $z_0 \in Q$. Take z_0 and $z_0 = (z_0, \ldots, z_0)$ as reference points for $\|h\|_{H^p(Q)}$ and $\|h\|_{H^p(Q^n)}$ respectively. Let $\{Q_k\}$ be an expanding sequence of annuli such that

(i) $z_0 \in Q_k$,
(ii) $Q_k \subset Q$,
(iii) $Q = \bigcup Q_k$.

Let Γ_k be the positively oriented boundary of Q_k, and let $G_k(\cdot, z)$ be the Greens function of Q_k with pole at z.

To prove our lemma we make the following observation. Let $f \in H^p(Q^n)$, write $f(z) = (z_1, \ldots, z_n)$ and denote the exterior normal derivative by $\partial / \partial v$. The n-harmonic functions

$$u_k(z) = \left(\frac{1}{2\pi}\right)^n \int_{\Gamma_k} \cdots \int_{\Gamma_k} |f(w_1, \ldots, w_n)|^p \frac{\partial}{\partial v} G_k(w_1, z_1) \cdots$$

$$\frac{\partial}{\partial v} G_k(w_n, z_n) |dw_1| \cdots |dw_n|$$

form an increasing sequence (since $|f|^p$ is n-subharmonic), which, as can be easily seen, converges to the least n-harmonic majorant of $|f|^p$ in Q^n. Hence

$$\|f\|_{H^p(Q^n)} = \sup_k \left(\frac{1}{2\pi}\right)^n \int_{\Gamma_k} \cdots \int_{\Gamma_k} |f(w_1, \ldots, w_n)|^p \frac{\partial}{\partial v} G_k(w_1, z_0) \cdots$$

$$\frac{\partial}{\partial v} G_k(w_n, z_0) |dw_1| \cdots |dw_n|.$$ \hfill (2.1)
Without loss of generality, set \(j = 1 \). Let \(u \) be the least \(n \)-harmonic majorant of \(|h|^p \) on \(Q^n \). Fix \(z' \in Q^{n-1} \), let \(z = (z_1, z') \in Q^n \) and define \(h_{z_1}(z_1) = h(z) \). Clearly \(h_{z_1} \in H^p(Q) \); in particular, \(u(\cdot, z') \) is a harmonic majorant of \(|h_{z_1}|^p \) on \(Q \). By Lemma 1,

\[
\|\Pi h_{z_1}\|_{H^p(Q)} \leq K \|h_{z_1}\|_{H^p(Q)} \leq Ku(z_0, z')^{1/p}.
\]

The relations (2.1), with \(n = 1 \) and \(f = \Pi h_{z_1} \), and (2.2), imply

\[
\frac{1}{2\pi} \int_{\Gamma_k} |\Pi h_{z_1}(w_1)| \frac{\partial}{\partial \nu} G_k(z_0, w_1) |dw_1| < K^p u(z_0, z').
\]

Clearly \(\Pi h_{z_1}(z_1) = \Pi_1 h(z') \), so if we choose \(z' = (w_2, \ldots, w_n) \in \Gamma_k^{n-1} \), multiply both terms in (2.3) by \(\frac{\partial}{\partial \nu} G_k(z_0, w_2) \cdots \frac{\partial}{\partial \nu} G_k(z_0, w_n) \), and then integrate on \(\Gamma_k^{n-1} \) with respect to \((\frac{1}{2\pi})^{n-1} |dw_2| \cdots |dw_n| \), we obtain

\[
\left(\frac{1}{2\pi} \right)^n \int_{\Gamma_k} \cdots \int_{\Gamma_k} \left| \Pi_1 h(w_1, \ldots, w_n) \right| \frac{\partial}{\partial \nu} G_k(w_1, z_0) \cdots \frac{\partial}{\partial \nu} G_k(w_n, z_0) |dw_1| \cdots |dw_n| < K^p u(z_0),
\]

Taking the supremum in (2.4) over all \(k \), we get

\[
\|\Pi_1 h\|_{H^p(Q')} < K^p u(z_0) = K^p \|h\|_{H^p(Q')},
\]

which establishes the lemma.

The next lemmas, 3, 4 and 5, are listed for future reference; the proofs will be omitted. The proof of Lemma 3 is a straightforward generalization of the corresponding one-variable result (see the last paragraph on p. 182 of [3]). Lemmas 4 and 5 are proven in greater generality in [6] and [7].

Let \(V_j, 1 < j < n, \) be bounded domains in \(C \) with boundaries \(\partial V_j \). The distinguished boundary of \(\mathcal{U} = V_1 \times \cdots \times V_n \) is the product \(\partial \mathcal{U} = \partial V_1 \times \cdots \times \partial V_n \). We say that \(\partial \mathcal{U} \) is analytic if each \(\partial V_j \) consists of finitely many disjoint analytic curves.

3. **Lemma.** Let \(\mathcal{D} \subset \mathcal{U} \) be bounded polydomains in \(C^n \) with analytic distinguished boundaries \(\text{d} \mathcal{U} \subset \text{d} \mathcal{D} \). If \(f \) is holomorphic on \(\mathcal{U} \), and if its restriction to \(\mathcal{D} \) is in \(H^p(\mathcal{D}) \), then \(f \in H^p(\mathcal{U}) \).

For Lemmas 4 and 5, let \(\{\mathcal{U}_i\}_{i \in I} \) be a family of polydomains in \(C^n \) such that \(\bar{U}^n \subset \bigcup_{i \in I} \mathcal{U}_i \).

4. **Lemma** [6, Theorem 2.10, p. 301]. If \(f \) is holomorphic on \(U^n \) and if the restriction of \(f \) to each \(\mathcal{U}_i \cap U^n \) belongs to \(H^p(\mathcal{U}_i \cap U^n) \), then \(f \in H^p(U^n) \).

5. **Lemma** [7, Theorem 4.9]. For each \(i, j \in I \) let \(f_{ij} \in H^p(\mathcal{U}_i \cap \mathcal{U}_j \cap U^n) \) be given such that \(f_{ij} + f_{ji} + f_{ki} = 0 \) on any nonvoid intersection \(\mathcal{U}_i \cap \mathcal{U}_j \cap \mathcal{U}_k \cap U^n \). Then there exist functions \(f_i \in H^p(\mathcal{U}_i \cap U^n) \) such that \(f_j - f_i = f_{ij} \).

Let \(E \) be a subvariety of \(U^n \) of pure dimension \(n - 1 \) satisfying the following conditions. There exist \(r \in (0, 1) \), an annulus \(Q = Q(r, 1) \), a continuous function
\[\eta: [r, 1) \to [r, 1), \text{ and } \delta > 0, \text{ such that} \]
\[|z_n| \leq \eta((|z_1| + \cdots + |z_{n-1}|)/(n-1)) \]
whenever \((z_1, \ldots, z_n) \in Q^n \cap E\), and such that \(|\alpha - \beta| > \delta \text{ whenever } 1 < j < n\)
and \((\zeta', \alpha, \zeta'') \neq (\zeta', \beta, \zeta'')\) are in \((Q^{n-1} \times U \times Q^{n-j}) \cap E\).

6. Theorem. Let \(g\) be a holomorphic function on \(E\), let \(u\) be a pluriharmonic function on \(E\), and assume \(|g(z)|^p < u(z)\) for all \(z \in E\). Then \(g\) has an extension \(G \in H^p(U^n)\).

Proof. The requirements on \(E\) imply, as is observed in [5] for the more restrictive case \(\text{dist}(E, T^n) > 0\), that \((Q^{n-1} \times U) \cap E\) (and more generally any product obtained by permuting the \(n\) factors) is an unbranched analytic cover of \(Q^{n-1}\) of say \(m\) sheets. Thus, there are holomorphic functions \(\alpha_1, \ldots, \alpha_m\) on \(Q^{n-1}\) such that

\[
(Q^{n-1} \times U) \cap E = \{ (\zeta', z_n) \in Q^{n-1} \times U: z_n = \alpha_j(\zeta') \text{ for some } 1 < j < m \}.
\]

As in [5], define

\[
g_n(\zeta) = \sum_{i=1}^{m} g(\zeta', \alpha_i(\zeta')) \prod_{1 < j < m} \frac{z_n - \alpha_j(\zeta')}{\alpha_i(\zeta') - \alpha_j(\zeta')} \tag{6.1}
\]

for \(\zeta = (\zeta', z_n) \in Q^{n-1} \times U\).

Clearly, \(g_n\) is holomorphic in \(Q^{n-1} \times U\) and agrees with \(g\) on \((Q^{n-1} \times U) \cap E\). Since for each \(1 < i < m\) the composition \(u_i(\zeta') = u(\zeta', \alpha_i(\zeta'))\) is the real part of some holomorphic function on \(Q^{n-1}\), since

\[|g(\zeta', \alpha_i(\zeta'))|^p < u_i(\zeta'), \]

and since \(|\alpha_i(\zeta') - \alpha_j(\zeta')| > \delta\) for \(i \neq j\), it follows from (6.1) that \(|g_n|^p\) is majorized on \(Q^{n-1} \times U\) by the real part of a holomorphic function. In particular, \(g_n \in H^p(Q^{n-1} \times U)\).

A parallel construction to the above yields local extensions \(g_i \in H^p(Q^{i-1} \times U \times Q^{n-i})\) of \(g\) for each \(1 < i < n\).

By [2, Theorem 3.1, p. 110] there exists \(F \in H^\infty(U^n)\) such that \(E\) is the zero set of \(F\) and such that \(F\) generates the ideal-sheaf of \(E\). We define

\[
h_j = (\phi - g_i) / F, \tag{6.2}
\]

where \(\phi\) is a holomorphic extension of \(g\) on \(U^n\) (which exists by Cartan’s Theorem B). Since \(F\) generates the ideal-sheaf of \(E\), the functions \(h_i\) are well defined and holomorphic on \(Q^{i-1} \times U \times Q^{n-i}\).

To prove our theorem, we first consider the particular case \(\text{dist}(E, T^n) > 0\).

By taking \(r\) larger, if necessary, we can assume \(\text{dist}(E, Q^n) > 0\), and ([4, Theorem 4.8.3, p. 91]) that \(1/F\) is bounded on \(Q^n\). This immediately implies \(h_i - h_j = (g_j - g_i)/F \in H^p(Q^n)\) which with Lemma 2 and the fact that \(\Pi_j h_j = 0\) yields

\[
\Pi_j h_1 = \Pi_j (h_1 - h_j) \in H^p(Q^n). \tag{6.3}
\]
As in [1], we define
\[h = (1 - \Pi_1)(1 - \Pi_2) \cdots (1 - \Pi_n)h, \quad (6.4) \]
and \(G = \phi - Fh \). The function \(G \) is a holomorphic extension of \(g \) on \(U^n \). We proceed to establish \(G \in H^p(U^n) \).

From (6.4) it follows that
\[h - h = -\Sigma \Pi_i h + \Sigma \pi_j \Pi_i \Pi_j h = + \cdots. \]
A repeated application of Lemma 2, together with (6.3), implies \(h - h \in H^p(Q^n) \).

This, and (6.2), gives us
\[G = \phi - Fh = \phi - Fh + F(h - h) = g_1 + F(h_1 - h) \in H^p(Q^n). \]

Lemma 3 then implies \(G \in H^p(U^n) \).

We now consider the general case of the theorem.

Fix \(r' \in (r, 1) \), let
\[c' = \sup \{ \eta(x) : r < x < 1 - (1 - r')/(n - 1) \}, \]
and choose \(c \in (c', 1) \). Following [2] we define
\[\mathcal{U}_i = U^{i-1} \times U(r') \times U^{n-i}, \quad 1 < i < n - 1, \]
\[\mathcal{U}_n = Q^{n-1} \times U, \]
\[\mathcal{Q}_i = Q^{i-1} \times Q(r, r') \times Q^{n-i-1} \times Q(c, 1), \quad 1 < i < n - 1. \]

We observe
\[\mathcal{U}_i \cap \mathcal{U}_k = U^{i-1} \times U(r') \times U^{k-i-1} \times U(r') \times U^{n-k}, \quad 1 < i < k < n - 1, \]
\[\mathcal{U}_i \cap \mathcal{U}_n = Q^{i-1} \times Q(r, r') \times Q^{n-i-1} \times U, \quad 1 < i < n - 1. \]

Suppose \(1 < i < n - 1 \). If \((z_1, \ldots, z_{n-1}) \in Q^{i-1} \times Q(r, r') \times Q^{n-i-1} \) and \((z_1, \ldots, z_{n-1}, z_n) \in E \), then
\[\left| \frac{z_1}{\eta}(1 \leq j \leq n) \right| < c' < c. \]
Hence \(\text{dist}(E, \mathcal{Q}_i) > 0 \). We can then apply the special case of the theorem, proven above, to obtain extensions \(G_i \in H^p(\mathcal{Q}_i) \) of \(g \) for \(1 < i < n - 1 \).

In (6.1) we constructed an extension \(g_n \in H^p(\mathcal{U}_n) \) of \(g \). We relabel \(g_n = G_n \). The set of functions \(\{ G_i : 1 < i < n \} \) is then a complete set of local \(H^p \)-extensions of \(g \).

Let \(1 < i < j < n \). Then \(G_i - G_j \in H^p(\mathcal{U}_i \cap \mathcal{U}_j) \), and \(G_i - G_j = 0 \) on \(\mathcal{U}_i \cap \mathcal{U}_j \cap E \). Since \(F \) generates the ideal-sheaf of \(E \), the functions
\[f_{ij} = \frac{(G_i - G_j)}{F} \quad (6.5) \]
are well defined and holomorphic on \(\mathcal{U}_i \cap \mathcal{U}_j \). Moreover, since \(1/F \) is bounded on \(\mathcal{Q}_i \), we have \(f_{ij} \in H^p(\mathcal{Q}_i \cap \mathcal{U}_i \cap \mathcal{U}_j) \). The functions \(f_{ij} \) are holomorphic on \(\mathcal{U}_i \cap \mathcal{U}_j \), and the distinguished boundary of \(\mathcal{U}_i \cap \mathcal{U}_j \) is contained in that of \(\mathcal{Q}_i \cap \mathcal{U}_i \cap \mathcal{U}_j \). Lemma 3 then implies that \(f_{ij} \in H^p(\mathcal{Q}_i \cap \mathcal{Q}_j) \).

The sets \(\mathcal{U}_i : 1 < i < n \) form an open cover of \(U^n \). They can be enlarged to form an open cover of \(U^n \) such that the intersection of the enlargement of \(\mathcal{U}_i \) with \(U^n \) is again \(\mathcal{U}_i \). By Lemma 5 there exist functions \(f_i \in H^p(\mathcal{U}_i) \) such that
\[f_j - f_i = f_{ij}. \quad (6.6) \]
The functions $G_i + f_i F$ are in $H^p(\mathcal{U}_i)$ and extend g. Moreover, (6.5) and (6.6) imply $G_i + f_i F = G_j + f_j F$ on $\mathcal{U}_i \cap \mathcal{U}_j$. Hence we can analytically continue the functions $G_i + f_i F$ to a holomorphic function G on U^n which extends g. The restriction of G to \mathcal{U}_i (the function $G_i + f_i F$) is in $H^p(\mathcal{U}_i)$. Lemma 4 then implies $G \in H^p(U^n)$. This completes the proof.

REFERENCES

Department of Mathematics, University of Florida, Gainesville, Florida 32611