VECTOR VALUED INEQUALITIES FOR FOURIER SERIES

José L. Rubio de Francia

Abstract. Denoting by $S^*$ the maximal partial sum operator of Fourier series, we prove that $S^*(f_1, f_2, \ldots, f_k, \ldots) = (S^*f_1, S^*f_2, \ldots, S^*f_k, \ldots)$ is a bounded operator from $L^p(\mathbb{T})$ to itself, $1 < p, r < \infty$. Thus, we extend the theorem of Carleson and Hunt on pointwise convergence of Fourier series to the case of vector valued functions. We give also an application to the rectangular convergence of double Fourier series.

Let $S_n f$ denote the $n$th partial sum of the Fourier series of the function $f \in L^1(\mathbb{T}) = L^1([\pi, -\pi])$. The maximal operator $S^* f = \sup_{n} |S_n f|$ satisfies the inequality of Carleson and Hunt

$$\|S^* f\|_p \leq C_p \|f\|_p \quad (f \in L^p, 1 < p < \infty) \tag{1}$$

(see [5]). The following vector valued extension of (1) holds.

Theorem. If $1 < p, r < \infty$ and $(f_k)$ is a sequence of functions in $L^p(\mathbb{T})$

$$\left\| \left( \sum_k \left[ S^* f_k \right]^r \right)^{1/r} \right\|_p \leq C_{p,r} \left\| \left( \sum_k |f_k|^r \right)^{1/r} \right\|_p.$$

When $p = r$ the result is obvious from (1). When $r < p$ we shall derive it from the weighted norm inequality for Fourier series obtained by R. Hunt and W.-S. Young [6] in the same way followed by A. Córdoba and C. Fefferman [3] for the case of singular integral operators. The case $p < r$ is not a consequence of the preceding one since $S^*$ is by no means a selfadjoint operator, but a duality argument can still be used since a certain dual of the weighted norm inequality in [6] also holds.

We recall that $u$ satisfies Muckenhoupt's condition $A_p$ (see [8]) with constant $K$ if, for all intervals $I$,

$$m_I(u)m_I(u^{-p'/p})^{p'/p} < K \tag{2}$$

where $m_I(\cdot)$ stands for the mean value over $I$. It is shown in [6] that if (2) holds

$$\int [S^* f]^p u \leq B \int |f|^p u \tag{3}$$

where $B$ is constant depending only on $K$ and $p$.
Assume first that \( r < p \), and let \( p/r = q \). Given the sequence \((f_k)\), there is a function \( u \in L^q \) with \( \|u\|_q = 1 \) such that
\[
\int \left( \sum_k [S^*f_k]^{r/p} \right)^q = \left\{ \int \sum_k [S^*f_k]^ru \right\}^q \leq \left\{ \sum_k \int [S^*f_k]^u \right\}^q,
\]
where \( s \) is a fixed number with \( 1 < s < q' \) and \( u_q \) is defined by
\[
u_q(x) = \sup_{s \in T} \left( \frac{1}{|T|} \int_T |u|^s \right)^{1/s} = [(u^s)]^{1/s},
\]
(by \( g^* \) we denote the Hardy-Littlewood maximal function of \( g \)). It is known that \( u_q \) satisfies \( A_1 \), and hence \( A_r \), with constant \( K \) depending only on \( s \) (see [3]). Thus
\[
\int \left( \sum_k [S^*f_k]^{r/p} \right)^q \leq B_{r,s} \left\{ \sum_k \int |f_k|^u \right\}^q \leq B_{r,s} \|u_q\|_q^q \int \left( \sum_k |f_k|^r \right)^q.
\]
But \( u \mapsto u_q \) is a bounded operator in \( L^q(T) \) and the result follows.

Now we consider the case \( p < r \). It will suffice to prove the theorem for the operator \( S_n^*f = \sup_{n \leq N} |S_n^*f| \) with a constant \( C_{r,n} \) independent of \( N \). Given a finite collection \( \{a_1, a_2, \ldots, a_N\} \) of measurable functions with \( \sum_1^N |a_k(x)| < 1 \), we define the operator \( T_{a,f} = \sum_{k=1}^N S_k(fh_k) \) and we assert the following
\[
\left\| \left( \sum_k |T_{a_i}f|^r \right)^{1/|q|} \right\|_q \leq C_{q,s} \left\| \left( \sum_k |f_k|^r \right)^{1/|q|} \right\|_q \quad (1 < s < q < \infty)
\]
where each \( a_k \) is as above and \( C_{q,s} \) depends only on \( q \) and \( s \).

For each \( f \in L^1 \) there is some \( \alpha = \{h_1, \ldots, h_N\} \) such that, for every \( g \in L^1 \),
\[
(\sum_k |T_{a_i}f|^r)^{1/|q|} \leq C_{q,s} \left( \sum_k |f_k|^r \right)^{1/|q|}.
\]
(define \( h_k = \text{sgn}(S_kf) \) on \( A_k \) and \( h_k = 0 \) outside of \( A_k \), where \( \{A_1, \ldots, A_N\} \) is a partition of \( T \) such that \( S_k^*f = |S_kf| \) on \( A_k \)). Since \( r' < p' \) the theorem follows from (5) and the duality between \( L^p(l') \) and \( L^q(l'' \).

If \( u \) satisfies \( A_q \) with constant \( K < 1 < q < \infty \), we shall prove that
\[
\int |T_{a,f}|^q u < B \int |f|^q u
\]
where \( B \) depends on \( K \) and \( q \) only. This is based on (3) and the fact that \( u \) satisfies \( A_q \) with constant \( K \) if and only if \( u^{-q'/q} \) satisfies \( A_{q'}/q \) with constant \( K^{q'/q} \). Thus, for an adequate \( w \in L^q \) with \( \|w\|_q = 1 \)
\[
\int |T_{a,f}|^q w = \left\{ \int (T_{a,f}u)^{1/q} \right\}^q \leq \left\{ \int \sum_k h_k S_k(u^{1/q}) \right\}^q \leq \left\{ \int |f|^q u \right\} \left\{ \int u^{-q'/q} |S^*(u^{1/q})|^q \right\}^{q/q'} \leq \left\{ \int |f|^q u \right\} B \left\{ \int u^{-q'/q} |u^{1/q}|^q \right\}^{q/q'} = B \int |f|^q u.
\]
We derive (5) from (6) by the same argument used in the case $r < p$, and the proof is ended.

**Corollary 1.** Let $f = (f_k) \in L^p(l')$, $1 < p$, $r < \infty$, and let $S_n f(x) = (S_{n1} f(x), S_{n2} f(x), \ldots, S_{nk} f(x), \ldots)$ be the partial sums of the (vector valued) Fourier series of $f$. Then

$$
\lim_n \|S_n f(x) - f(x)\|_r = 0 \quad (a.e.).
$$

The proof is as usual, since the result is true for the functions $f$ with a finite number of nonvanishing components, and these are dense in $L^p(l')$.

We can obviously replace $l'$ by $L'$ in the preceding corollary, and since $L^p(L'(T))$ is identified with the Benedek-Panzone space $L^r\Phi(T^2)$ (see [1]) we obtain

**Corollary 2.** Let $f \in L^r\Phi(T^2)$ with $1 < r, p < \infty$. If $(S_{nm} f)_{n,m}$ are the rectangular sums of the Fourier series of $f$, then

$$
\lim_{n,m} \|S_{nm} f(\cdot, y) - f(\cdot, y)\|_r = 0 \quad (a.e. y \in T).
$$

In fact, by the preceding remark, we know that the function

$$
g_m(x, y) = \sum_{k=-m}^{m} \sum_{j=-\infty}^{\infty} \hat{f}(j, k) e^{i(jx + ky)}
$$

satisfies, for almost every $y \in T$

$$
\lim_m \|g_m(\cdot, y) - f(\cdot, y)\|_r = 0. \quad (7)
$$

If we fix any $y \in T$ for which (7) holds,

$$
\lim_n \|S_{nm} f(\cdot, y) - g_m(\cdot, y)\|_r = \lim_n \|S_n g_m(\cdot, y) - g_m(\cdot, y)\|_r = 0
$$

and the convergence is uniform in $m$ because $\{g_m(\cdot, y) | m \in N\}$ is a precompact subset of $L^p(T)$, so that

$$
\lim_{n,m} S_{nm} f(\cdot, y) = \lim_m \lim_n S_{nm} f(\cdot, y) = f(\cdot, y) \quad (\text{in } L^r\text{-norm}).
$$

**Remark.** (i) Both corollaries are in fact consequences of the maximal inequality

$$
\left\| \left( \sup_n \sum_k |S_{nk}|^r \right)^{1/r} \right\|_p \leq C_{p,r} \left\| \left( \sum_k |f_k|^r \right)^{1/r} \right\|_p
$$

which is weaker than the one we have actually proved. We observe that (8) is very easy when $2p/(p + 1) < r < 2p$ (by interpolation between the trivial case $p = r$ and the case $r = 2$ which is a consequence of the theorem of Marcinkiewicz and Zygmund [7]), but is not obvious for the remaining values of $r$ and $p$.

(ii) Our Corollary 2 is in some sense intermediate between the positive result

$$
\lim_{n,m} \|S_{nm} f - f\|_{r,p} = 0 \quad (f \in L^r\Phi(T^2))
$$

(a consequence of M. Riesz's theorem) and the failure of pointwise convergence of the double sequence $S_{nm} f(x, y)$ which was proved by C. Fefferman [4].
I wish to express my thanks to A. Córdoba for the helpful indications which originated this paper.

REFERENCES


Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain