Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society, the Proceedings of the American Mathematical Society (PROC) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Kaehler manifolds of positive curvature operator
HTML articles powered by AMS MathViewer

by Koichi Ogiue and Shun-ichi Tachibana PDF
Proc. Amer. Math. Soc. 78 (1980), 548-550 Request permission

Abstract:

An n-dimensional compact Kaehler manifold of positive curvature operator is real cohomologically equivalent to ${P_n}(C)$.
References
  • Eugenio Calabi and Edoardo Vesentini, Sur les variétés complexes compactes localement symétriques, Bull. Soc. Math. France 87 (1959), 311–317 (French). MR 111057
  • S. Kobayashi and K. Nomizu, Foundations of differential geometry. II, Interscience, New York, 1969.
  • Daniel Meyer, Sur les variétés riemanniennes à opérateur de courbure positif, C. R. Acad. Sci. Paris Sér. A-B 272 (1971), A482–A485 (French). MR 279736
  • Shun-ichi Tachibana, On Kählerian manifolds of $\sigma$-positive curvature operator, Natur. Sci. Rep. Ochanomizu Univ. 25 (1974), no. 1, 7–16. MR 431069
  • K. Yano and S. Bochner, Curvature and Betti numbers, Annals of Mathematics Studies, No. 32, Princeton University Press, Princeton, N. J., 1953. MR 0062505
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C55
  • Retrieve articles in all journals with MSC: 53C55
Additional Information
  • © Copyright 1980 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 78 (1980), 548-550
  • MSC: Primary 53C55
  • DOI: https://doi.org/10.1090/S0002-9939-1980-0556630-7
  • MathSciNet review: 556630