Kaehler manifolds of positive curvature operator
HTML articles powered by AMS MathViewer
- by Koichi Ogiue and Shun-ichi Tachibana
- Proc. Amer. Math. Soc. 78 (1980), 548-550
- DOI: https://doi.org/10.1090/S0002-9939-1980-0556630-7
- PDF | Request permission
Abstract:
An n-dimensional compact Kaehler manifold of positive curvature operator is real cohomologically equivalent to ${P_n}(C)$.References
- Eugenio Calabi and Edoardo Vesentini, Sur les variétés complexes compactes localement symétriques, Bull. Soc. Math. France 87 (1959), 311–317 (French). MR 111057 S. Kobayashi and K. Nomizu, Foundations of differential geometry. II, Interscience, New York, 1969.
- Daniel Meyer, Sur les variétés riemanniennes à opérateur de courbure positif, C. R. Acad. Sci. Paris Sér. A-B 272 (1971), A482–A485 (French). MR 279736
- Shun-ichi Tachibana, On Kählerian manifolds of $\sigma$-positive curvature operator, Natur. Sci. Rep. Ochanomizu Univ. 25 (1974), no. 1, 7–16. MR 431069
- K. Yano and S. Bochner, Curvature and Betti numbers, Annals of Mathematics Studies, No. 32, Princeton University Press, Princeton, N. J., 1953. MR 0062505
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 78 (1980), 548-550
- MSC: Primary 53C55
- DOI: https://doi.org/10.1090/S0002-9939-1980-0556630-7
- MathSciNet review: 556630