Interpolation fails for the Souslin-Kleene closure of the open set quantifier logic
HTML articles powered by AMS MathViewer
- by J. A. Sgro
- Proc. Amer. Math. Soc. 78 (1980), 568-572
- DOI: https://doi.org/10.1090/S0002-9939-1980-0556634-4
- PDF | Request permission
Abstract:
In this paper we show that the Souslin-Kleene closure of the open set quantifier logic fails to have interpolation. We also show that the notion of a ${T_0}$-topological space is not definable in this logic. This gives a more natural proof that it is strictly weaker than the interior operator logic.References
- K. Jon Barwise, Axioms for abstract model theory, Ann. Math. Logic 7 (1974), 221–265. MR 376337, DOI 10.1016/0003-4843(74)90016-3
- J. A. Makowsky and S. Shelah, The theorems of Beth and Craig in abstract model theory. I. The abstract setting, Trans. Amer. Math. Soc. 256 (1979), 215–239. MR 546916, DOI 10.1090/S0002-9947-1979-0546916-0
- Joseph Sgro, Completeness theorems for topological models, Ann. Math. Logic 11 (1977), no. 2, 173–193. MR 462913, DOI 10.1016/0003-4843(77)90016-X
- Joseph Sgro, Completeness theorems for continuous functions and product topologies, Israel J. Math. 25 (1976), no. 3-4, 249–272. MR 539984, DOI 10.1007/BF02757004
- Joseph Sgro, The interior operator logic and product topologies, Trans. Amer. Math. Soc. 258 (1980), no. 1, 99–111. MR 554321, DOI 10.1090/S0002-9947-1980-0554321-4
- Stephen Willard, General topology, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1970. MR 0264581
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 78 (1980), 568-572
- MSC: Primary 03C80; Secondary 54A99
- DOI: https://doi.org/10.1090/S0002-9939-1980-0556634-4
- MathSciNet review: 556634