HOW TO RECOGNIZE A LOCALIZED SPHERE

J. AGUADÉ

Abstract. Two cohomological characterizations of the sphere localized at a prime are given.

The purpose of this note is to obtain necessary and sufficient conditions on the cohomology of a nilpotent space in order to insure that it has the homotopy type of \(S^m_p \), the sphere localized at the prime \(p \) (cf. [2]). \(p \) will denote a fixed prime integer. \(\hat{\mathbb{Z}}_p, \mathbb{Z}_{(p)}, \mathbb{Z}_n, \mathbb{Z}_{p^m} \) denote the \(p \)-adic integers, the integers localized at \(p \), the integers modulo \(n \) and the \(p^m \)th roots of unity with \(m \) running over all integers \(> 0 \), respectively. Group will always mean abelian group. A group is called \(p \)-local if it is \(q \)-divisible for every \(q \neq p \) and has no \(q \)-torsion for every \(q \neq p \). A nilpotent space is called \(p \)-local if its homology groups with integral coefficients are \(p \)-local [2, p. 53].

Recall that a subgroup \(B \) of a group \(A \) is called \(p \)-basic if the following holds:

(i) \(B \) is a direct sum of cyclic \(p \)-groups and infinite cyclic groups,
(ii) \(A/B \) is \(p \)-divisible,
(iii) \(B/p^kB \) is a direct summand of \(A/p^kB \) for all \(k \).

Every group contains \(p \)-basic subgroups [1, 1, p. 137].

We use freely the most elementary properties of the functors Hom and Ext. A standard reference is [1, Chapters VIII and IX]. In particular we shall use the following:

\[
\text{Ext}(\mathbb{Z}_n, A) = A/nA, \quad \text{Ext}(\mathbb{Z}_{p^m}, \mathbb{Z}_p) = \mathbb{Z}_p, \quad \text{Ext}(\mathbb{Q}, \mathbb{Z}_{(p)}) = \mathbb{Q}^{\times_0}, \quad \text{Ext}(\mathbb{Z}_p^m, \mathbb{Z}_{(p)}) = \hat{\mathbb{Z}}_p.
\]

All spaces are assumed to be of the homotopy type of CW-complexes.

Lemma 1. Let \(B \) be a \(p \)-basic subgroup of \(A \). Then \(\text{Hom}(A, \mathbb{Z}_p) = \text{Hom}(B, \mathbb{Z}_p) \).

Proof. Since \(A/B \) is \(p \)-divisible and \(\mathbb{Z}_p \) contains no \(p \)-divisible subgroups other than 0, the Hom-Ext exact sequence associated to \(\mathbb{B} \to A \to A/B \) yields that \(\text{Hom}(A, \mathbb{Z}_p) \) is a subgroup of \(\text{Hom}(B, \mathbb{Z}_p) \). Let \(f: B \to \mathbb{Z}_p \). Clearly, \(f \) factorizes through \(f': B/pB \to \mathbb{Z}_p \). Since \(B \) is a \(p \)-basic subgroup of \(A \), \(B/pB \) is a direct summand of \(A/pB \). Hence \(f' \) extends to \(A/pB \) and yields a homomorphism \(g \in \text{Hom}(A, \mathbb{Z}_p) \).

Lemma 2. If \(A \) is a \(p \)-local group such that \(\text{Hom}(A, \mathbb{Q}) = \text{Hom}(A, \mathbb{Z}_p) = 0 \), then \(A \) is a divisible \(p \)-group.
Proof. Since \(\text{Hom}(A, \mathbb{Q}) = 0 \), \(A \) has no elements of infinite order. Since \(A \) is \(p \)-local, \(A \) is a \(p \)-group. Let \(B \) be a \(p \)-basic subgroup. By Lemma 1, \(\text{Hom}(B, \mathbb{Z}_p) = \text{Hom}(A, \mathbb{Z}_p) = 0 \) and since \(B \) is a direct sum of cyclic \(p \)-groups then \(B = 0 \). That is \(A \) is \(p \)-divisible and so, since \(A \) is \(p \)-local, \(A \) is divisible. □

Lemma 3. Let \(E \) be a nilpotent space such that \(H_*(E; \mathbb{Z}) = H_*(S^m_p; \mathbb{Z}) \). Then \(E \) has the homotopy type of \(S^m_p \).

Proof. If \(m > 1 \) then \(H_1E = 0 \). In other words, the abelianization of \(\pi_1E \) is trivial. Since \(\pi_1E \) is a nilpotent group we conclude that \(E \) is simply connected and so \(E \) is a Moore space \(M(\mathbb{Z}(p), m) \), that is a localized sphere \(S^m_p \).

If \(m = 1 \) then we have

\[
\left[E, S^1_p \right] = \left[E, K(\mathbb{Z}(p), 1) \right]
\cong H^1(E; \mathbb{Z}(p)) = \mathbb{Z}(p)
\]

where \(K(\mathbb{Z}(p), 1) \) denotes an Eilenberg-Mac Lane space of type \((\mathbb{Z}(p), 1)\). Then there exists a map \(f: E \rightarrow S^1_p \) which induces isomorphisms in homology. Because \(E \) and \(S^1_p \) are nilpotent spaces, \(f \) must be a homotopy equivalence. The result follows. □

Theorem 4. Let \(E \) be a nilpotent space such that

1. \(E \) is \(p \)-local,
2. \(H^*(E; R) = H^*(S^m_p; R) \) where \(R = \mathbb{Z}_p \) or \(R = \hat{\mathbb{Z}}_p \),
3. \(H^*(E; Q) = H^*(S^m_p; Q) \),
4. \(H^{m+1}(E; Z(p)) = 0 \).

Then \(E = S^m_p \). If any of the above conditions is omitted then the conclusion is false.

Proof. It suffices to prove that \(H_*(E; \mathbb{Z}) = H_*(S^m_p; \mathbb{Z}) \). Let us consider the exact sequence \(\hat{\mathbb{Z}}_p \rightarrow \mathbb{Z}_p \rightarrow \mathbb{Z}_p \). It induces a long exact sequence in cohomology:

\[
\ldots \rightarrow H^r(E; \hat{\mathbb{Z}}_p) \rightarrow H^r(E; \mathbb{Z}_p) \rightarrow H^r(E; \mathbb{Z}_p) \rightarrow H^{r+1}(E; \hat{\mathbb{Z}}_p) \rightarrow \ldots
\]

From this it follows easily that we may assume, without loss of generality that \(R = \mathbb{Z}_p \) in condition (2). On the other hand, condition (3) implies that \(H_rE \) has torsion-free rank zero if \(r \neq m \) and has torsion-free rank one if \(r = m \).

The universal coefficient theorem:

\[
\text{Ext}(H_{r-1}E, \mathbb{Z}_p) \rightarrow H^r(E; \mathbb{Z}_p) \rightarrow \text{Hom}(H_rE, \mathbb{Z}_p)
\]

yields: \(\text{Hom}(H_rE, \mathbb{Z}_p) = 0 \) if \(r \neq m \) and \(\text{Ext}(H_rE, \mathbb{Z}_p) = 0 \) if \(r \neq m - 1 \). It follows from Lemma 2 that \(H_rE \) is a divisible \(p \)-group if \(r \neq m \). The structure theorem for divisible groups [1, I, p. 104] shows that \(H_rE = \bigoplus \mathbb{Z}_p^m \). But \(\text{Ext}(H_rE, \mathbb{Z}_p) = 0 \) if \(r \neq m - 1 \), hence \(H_rE = 0 \) if \(r \neq m, m - 1 \) because \(\text{Ext}(\mathbb{Z}_p^m, \mathbb{Z}_p) = \mathbb{Z}_p \).

Since \(H^{m+1}(E; \mathbb{Z}_p) = \mathbb{Z}_p \) the universal coefficient theorem shows that there are two cases:

(A) \(\text{Ext}(H_{m-1}E, \mathbb{Z}_p) = \mathbb{Z}_p \), \(\text{Hom}(H_mE, \mathbb{Z}_p) = 0 \).

\(H_{m-1}E \) is a divisible \(p \)-group and so \(H_{m-1}E = \bigoplus \mathbb{Z}_p^m \). Since \(\text{Ext}(H_{m-1}E, \mathbb{Z}_p) = \mathbb{Z}_p \) it follows that \(H_{m-1}E = \mathbb{Z}_p^m \). On the other hand, let \(B \) be a \(p \)-basic subgroup of \(H_mE \). By Lemma 1, \(\text{Hom}(B, \mathbb{Z}_p) = \text{Hom}(H_mE, \mathbb{Z}_p) = 0 \) and so \(B = 0 \) and \(H_mE \) is divisible because it is \(p \)-local and \(p \)-divisible. Since \(H_mE \) has torsion-free rank one and \(\text{Ext}(H_mE, \mathbb{Z}_p) = 0 \) we conclude that \(H_mE = \mathbb{Q} \). Hence, we see that in this case
the space E has the homology of $M(Q, m) \vee M(Z_p^m, m - 1)$, the wedge of the Moore spaces $M(Q, m)$ and $M(Z_p^m, m - 1)$.

(B) $\text{Ext}(H_{m-1}E, Z_p) = 0$, $\text{Hom}(H_{m}E, Z_p) = Z_p$.

$H_{m-1}E$ is a divisible p-group such that $\text{Ext}(H_{m-1}E, Z_p) = 0$. Since $\text{Ext}(Z_p^m, Z_p) = Z_p$ then $H_{m-1}E = 0$ and so E has homology $\neq 0$ only in dimension m. Let B be a p-basic subgroup of H_mE. We have $\text{Hom}(B, Z_p) = \text{Hom}(H_mE, Z_p) = Z_p$. Since B is a direct sum of infinite cyclic groups and cyclic p-groups, either $B = Z$ or $B = Z_p^\alpha$. If $B = Z_p^\alpha$ then condition (iii) in the definition of p-basic subgroup yields that Z_p^α is a direct summand of H_mE, but this is impossible because $\text{Ext}(H_mE, Z_p) = 0$. Hence Z is a p-basic subgroup of H_mE. Since $D = H_mE/Z$ is divisible and $\text{Ext}(H_mE, Z_p) = 0$, the Hom-Ext exact sequence associated to $Z \rightarrow H_mE \rightarrow D$ gives $\text{Ext}(D, Z_p) = 0$. If we apply now the structure theorem for divisible groups we obtain that D has no p-torsion and so H_mE is torsion-free because it is p-local and so it can only have p-torsion. Then H_mE is a p-local torsion-free group of rank one. We apply now the classification theorem for these groups [1, II, p. 110]. Since H_mE is p-local, in order to prove that $H_mE = Z(p)$ it suffices to show that H_mE contains elements of p-height zero. Let us consider $1 \in Z \subset H_mE$. If $1 = pa$, $a \in H_mE$ then in D we have $0 = p\bar{a}$ and since D has no p-torsion we get $a \in Z$, a contradiction. Hence, the type of H_mE is $t_q = \infty$ if $q \neq p$ and $t_p = 0$. Then the space E has the same integral homology as S^m and then, by Lemma 3, $E = S^m$.

We have proved that if a nilpotent space E satisfies conditions (1), (2), (3) of the theorem then either $E = S^m$ or E has the same homology as $M(Q, m) \vee M(Z_p^m, m - 1)$. It suffices to show that if $H_mE = Q$ then E does not satisfy condition (4). This follows easily from the fact $\text{Ext}(Q, Z(p)) = Q^{\oplus \infty}$.

Finally, note that none of the conditions (1), (2), (3), (4) can be omitted. Let us consider the spaces $E_1 = S^m \vee M(Z_q, 2)$ (q a prime $\neq p$); $E_2 = S^m \vee M(Z_p, 2m)$; $E_3 = M(Z_p^m, m - 1)$; $E_4 = M(Q, m) \vee M(Z_p^m, m - 1)$. It is easily seen that the space E_i verifies conditions (1), (2), (3), (4) except the ith, but $E_i \neq S^m$.

The above theorem shows that the cohomology with coefficients Z_p, Z_p^α, Q is not enough to characterize the localized spheres. The following theorem shows that the cohomology with coefficients $Z(p)$ is suitable for this purpose.

THEOREM 5. Let E be a p-local nilpotent space such that $H^*(E; Z(p)) = H^*(S^m; Z(p))$. Then $E = S^m$.

PROOF. From the universal coefficient theorem we obtain $\text{Hom}(H,E, Z(p)) = 0$ if $r \neq m$ and $\text{Ext}(H,E, Z(p)) = 0$ if $r \neq m - 1$. Further, $\text{Ext}(H_{m-1}E, Z(p))$ is a p-local subgroup of $Z(p)$. Then either $\text{Ext}(H_{m-1}E, Z(p)) = Z(p)$ or $\text{Ext}(H_{m-1}E, Z(p)) = 0$. But in the first case $Z(p)$ will be a cotorsion group (cf. [1, I, p. 232] and Theorem 54.6 of [1, I, p. 235]) and this is impossible because $\text{Ext}(Q, Z(p)) = Q^{\oplus \infty} \neq 0$. Hence, $\text{Ext}(H,E, Z(p)) = 0$ for all r.

Let B_r be a p-basic subgroup of H,E. If B_r contains a direct summand of the form Z_p^α, then it follows easily from the definition of p-basic subgroup that Z_p^α is a direct summand of H,E. But $\text{Ext}(Z_p^\alpha, Z(p)) = Z(p)/p^kZ(p) \neq 0$. Hence, B_r is free. Let us consider the Hom-Ext exact sequence associated to $Z(p) \rightarrow Z(p) \rightarrow Z_p$:
0 → Hom(H_rE, \mathbb{Z}(p)) \rightarrow \mathbb{Z}(p) → Hom(H_rE, \mathbb{Z}_p) → 0.

We get that Hom(H_rE, \mathbb{Z}_p) = 0 if r \neq m. By Lemma 1, Hom(B_r, \mathbb{Z}_p) = Hom(H_rE, \mathbb{Z}_p) = 0, hence B_r = 0 if r \neq m. This shows that H_rE is a divisible group for r \neq m. But the structure theorem for divisible groups and the equalities Ext(Q, \mathbb{Z}(p)) = Q^\mathbb{N}, Ext(\mathbb{Z}_p, \mathbb{Z}(p)) = \hat{\mathbb{Z}}_p, Ext(H_rE, \mathbb{Z}(p)) = 0 yield H_rE = 0 if r \neq m.

In the case r = m the above exact sequence shows that Hom(H_mE, \mathbb{Z}_p) = \mathbb{Z}_p. By Lemma 1, B_m = \mathbb{Z}. The Hom-Ext exact sequence associated to \mathbb{Z} \rightarrow H_mE \rightarrow H_mE/\mathbb{Z} shows that Ext(H_mE/\mathbb{Z}, \mathbb{Z}(p)) is the image of the countable group Hom(\mathbb{Z}, \mathbb{Z}(p)). Since Ext(Q, \mathbb{Z}(p)) and Ext(\mathbb{Z}_p, \mathbb{Z}(p)) are both uncountable and since H_mE/\mathbb{Z} is a divisible group, we get that H_mE/\mathbb{Z} is a torsion group without p-torsion. This leads to Hom(H_mE/\mathbb{Z}, Q) = 0 and so Hom(H_mE, Q) = Hom(\mathbb{Z}, Q) = Q. Hence H_mE is a group of torsion-free rank one. Further, H_mE is torsion-free because H_mE/\mathbb{Z} has no p-torsion and H_mE is p-local. Now we can show, as in the proof of Theorem 4 that H_mE = \mathbb{Z}(p) and so the space E has the same integral homology as S_p^m. Then, by Lemma 3, E is a localized sphere S_p^m. □

REFERENCES

SECCIÓ DE MATEMÀTIQUES, UNIVERSITAT AUTÒNOMA DE BARCELONA, BELATTERA (BARCELONA), SPAIN

Current address: Forschungs Institut für Mathematik, ETH-Zentrum, 8092-Zürich, Switzerland