The Laskerian property, power series rings and Noetherian spectra
HTML articles powered by AMS MathViewer
- by Robert Gilmer and William Heinzer
- Proc. Amer. Math. Soc. 79 (1980), 13-16
- DOI: https://doi.org/10.1090/S0002-9939-1980-0560575-6
- PDF | Request permission
Abstract:
We show that if the power series ring $R[[X]]$ in one indeterminate over a commutative ring R with identity is Laskerian, then R is Noetherian. On the other hand, if $R[[X]]$ is a ZD-ring, then R has Noetherian spectrum, but R need not be Noetherian. We show that, in general, a Laskerian ring has Noetherian spectrum.References
- Jimmy T. Arnold, Robert Gilmer, and William Heinzer, Some countability conditions in a commutative ring, Illinois J. Math. 21 (1977), no. 3, 648–665. MR 460316 N. Bourbaki, Commutative algebra, Addison-Wesley, Reading, Mass., 1972.
- E. Graham Evans Jr., Zero divisors in Noetherian-like rings, Trans. Amer. Math. Soc. 155 (1971), 505–512. MR 272773, DOI 10.1090/S0002-9947-1971-0272773-9
- William Heinzer and Jack Ohm, On the Noetherian-like rings of E. G. Evans, Proc. Amer. Math. Soc. 34 (1972), 73–74. MR 294316, DOI 10.1090/S0002-9939-1972-0294316-2 S. Mori, Über eindeutige Reduktion in Ringen ohne Teilerkettensatz, J. Sci. Hiroshima Univ. Ser. A 3 (1933), 275-318.
- Jack Ohm and R. L. Pendleton, Rings with noetherian spectrum, Duke Math. J. 35 (1968), 631–639. MR 229627
- Oscar Zariski and Pierre Samuel, Commutative algebra, Volume I, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, New Jersey, 1958. With the cooperation of I. S. Cohen. MR 0090581
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 79 (1980), 13-16
- MSC: Primary 13E05; Secondary 13J05
- DOI: https://doi.org/10.1090/S0002-9939-1980-0560575-6
- MathSciNet review: 560575