On odd-primary components of Lie groups
HTML articles powered by AMS MathViewer
- by K. Knapp
- Proc. Amer. Math. Soc. 79 (1980), 147-152
- DOI: https://doi.org/10.1090/S0002-9939-1980-0560601-4
- PDF | Request permission
Abstract:
The transfer map $t:{\pi ^s}({P_\infty }{\mathbf {C}}) \to {\pi ^s}({S^0})$ is represented by an element $\tau \in \pi _s^{ - 1}({P_\infty }{{\mathbf {C}}^ + })$. We compute the Adams-e-invariant of $\tau$ and use this and the splitting of the p-localization of ${S^1} \wedge {P_\infty }{\mathbf {C}}$ into a wedge of $(p - 1)$ spaces to prove that for a prime $p \geqslant 5$ the p-component of the element $[G,\mathcal {L}]$ defined by a compact Lie group G in $\pi _ \ast ^s$ is zero in the known part of stable homotopy.References
- J. F. Adams, On the groups $J(X)$. II, Topology 3 (1965), 137–171. MR 198468, DOI 10.1016/0040-9383(65)90040-6 J. M. Boardman, Stable homotopy theory, duality and Thom spectra (mimeographed notes), Chapter 5, University of Warwick, 1966.
- A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces. II, Amer. J. Math. 81 (1959), 315–382. MR 110105, DOI 10.2307/2372747
- N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1337, Hermann, Paris, 1968 (French). MR 0240238
- K. Knapp, Rank and Adams filtration of a Lie group, Topology 17 (1978), no. 1, 41–52. MR 470960, DOI 10.1016/0040-9383(78)90011-3 H. R. Miller, Some algebraic aspects of the Adams-Novikov spectral sequence, Dissertation, Princeton Univ., Princeton, N. J., 1974.
- Mamoru Mimura, Goro Nishida, and Hirosi Toda, $\textrm {Mod}\ p$ decomposition of compact Lie groups, Publ. Res. Inst. Math. Sci. 13 (1977/78), no. 3, 627–680. MR 0478187, DOI 10.2977/prims/1195189602
- Shichirô Oka, The stable homotopy groups of spheres. III, Hiroshima Math. J. 5 (1975), no. 3, 407–438. MR 394651
- V. S. Varadarajan, Lie groups, Lie algebras, and their representations, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1974. MR 0376938
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 79 (1980), 147-152
- MSC: Primary 55Q45; Secondary 57R90
- DOI: https://doi.org/10.1090/S0002-9939-1980-0560601-4
- MathSciNet review: 560601