Lagrange’s theorem with $N^{1/3}$ squares
HTML articles powered by AMS MathViewer
- by S. L. G. Choi, Paul Erdős and Melvyn B. Nathanson
- Proc. Amer. Math. Soc. 79 (1980), 203-205
- DOI: https://doi.org/10.1090/S0002-9939-1980-0565338-3
- PDF | Request permission
Abstract:
For every $N > 1$ we construct a set A of squares such that $|A| < (4/\log 2){N^{1/3}} \log N$ and every nonnegative integer $n \leqslant N$ is a sum of four squares belonging to A.References
- J. Gani and V. K. Rohatgi (eds.), Contributions to probability, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. A collection of papers dedicated to Eugene Lukacs. MR 618672
- Erich Härtter and Joachim Zöllner, Darstellungen natürlicher Zahlen als Summe und als Differenz von Quadraten, Norske Vid. Selsk. Skr. (Trondheim) 1 (1977), 8 (German, with English summary). MR 506101
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 79 (1980), 203-205
- MSC: Primary 10J05
- DOI: https://doi.org/10.1090/S0002-9939-1980-0565338-3
- MathSciNet review: 565338