DERIVATIONS ON CONTINUOUS FUNCTIONS

YASUO WATATANI

Abstract. We shall give a simple proof of Sakai's characterization on derivations of continuous functions.

A derivation \(d \) of an algebra \(A \) is a linear map of the definition domain \(D \) of \(d \) into \(A \) such that \(d(fg) = (df)g + f(dg) \) for \(f, g \in D \). S. Sakai [1] discussed derivations of \(C[0, 1] \) and gave several theorems to represent by concrete operations. We shall prove a theorem of Sakai's type with a different simple proof:

Theorem. If the definition domain of a derivation \(d \) of \(C[0, 1] \) includes the space \(C^{(\infty)}[0, 1] \) of all infinitely differentiable functions, then there is (unique) \(h \in C[0, 1] \) such that \(df = hf' \) for all \(f \in C^{(\infty)}[0, 1] \).

Proof. For every \(f \in C^{(\infty)}[0, 1] \) and \(0 < a < 1 \) there is a certain \(g \in C^{(\infty)}[0, 1] \) such that

\[
 f(x) = f(a) + f'(a)(x - a) + g(x)(x - a)^2
\]

so that we have

\[
 df(x) = f'(a)dx + dg(x)(x - a)^2 + 2g(x)(x - a)d(x - a).
\]

Putting \(h = dx \) and \(x = a \), we have

\[
 df(a) = f'(a)h(a).
\]

References

Department of Mathematics, Osaka Kyoiku University, Tennoji, Osaka 543, Japan

Received by the editors January 2, 1979.

AMS (MOS) subject classifications (1970). Primary 46L05.
Key words and phrases. Derivation, continuous function.

© 1980 American Mathematical Society

0002-9939/80/0000-0260/001.25

206

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use