An application of Yau’s maximum principle to conformally flat spaces
HTML articles powered by AMS MathViewer
- by S. I. Goldberg
- Proc. Amer. Math. Soc. 79 (1980), 268-270
- DOI: https://doi.org/10.1090/S0002-9939-1980-0565352-8
- PDF | Request permission
Abstract:
Results of M. Tani on compact conformally flat manifolds and of M. Okumura on compact hypersurfaces of Euclidean space are extended to complete spaces by an application of S.-T. Yau’s “maximum principle".References
- Samuel I. Goldberg, On conformally flat spaces with definite Ricci curvature, K\B{o}dai Math. Sem. Rep. 21 (1969), 226–232. MR 253235
- Masafumi Okumura, Hypersurfaces and a pinching problem on the second fundamental tensor, Amer. J. Math. 96 (1974), 207–213. MR 353216, DOI 10.2307/2373587
- Mariko Tani, On a conformally flat Riemannian space with positive Ricci curvature, Tohoku Math. J. (2) 19 (1967), 227–231. MR 220213, DOI 10.2748/tmj/1178243319
- Shing Tung Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201–228. MR 431040, DOI 10.1002/cpa.3160280203
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 79 (1980), 268-270
- MSC: Primary 53C20; Secondary 53C40
- DOI: https://doi.org/10.1090/S0002-9939-1980-0565352-8
- MathSciNet review: 565352