SHRINKING DECOMPOSITIONS OF E^n
WITH COUNTABLY MANY 1-DIMENSIONAL,
STAR-LIKE EQUVALENT NONDEGENERATE ELEMENTS

TERRY L. LAY

ABSTRACT. It is shown that an upper semicontinuous decomposition of E^n ($n > 1$)
with countably many 1-dimensional, star-like equivalent nondegenerate elements is
shrinkable.

In this paper we address the problem of shrinking countable decompositions of
E^n with star-like equivalent nondegenerate elements. Specifically, we prove that if
G is an upper semicontinuous decomposition of E^n ($n > 1$) such that the collection
H_G of nondegenerate elements is a countable collection of 1-dimensional, star-like
equivalent sets, then $E^n/G \cong E^n$. If the nondegenerate elements are tame (i.e.
1-LCC embedded), then, for $n > 5$, the theorem follows easily from recent results
of R. D. Edwards [Ed]. However, in general, star-like sets need not be tame.

R. H. Bing [Bi 1] has shown that if H_G is a countable collection of star-like sets,
then $E^n/G \cong E^n$ ($n > 1$). R. J. Bean [Be] proved that $E^n/G \cong E^n$ ($n > 1$) if H_G
is a null sequence of star-like equivalent sets. The general case where H_G is a
countable collection of star-like equivalent sets is not known for $n > 3$. (For $n = 1$
the result is trivial and for $n = 2$ it follows from classical results.) The special case
when H_G is a countable collection of tame n-cells is of interest. (An n-cell in E^n
is tame if it is ambiently homeomorphic to a standardly embedded cell.) A recent
theorem of Starbird and Woodruff [S-W] states that $E^3/G \cong E^3$ if H_G is a
countable collection of tame 3-cells. The analogous theorem is not known for $n > 4$. R. H. Bing [Bi 1] has shown that $E^n/G \cong E^n$ ($n > 1$) if H_G is a countable
collection of tame arcs. The theorem presented here is proved using techniques
similar to those used by Bing. The key is the 1-dimensionality of the (star-like
equivalent) nondegenerate elements.

Let X be a nonempty compact set in E^n and $p \in X$. The set X is star-like with
respect to p if each geometric ray emanating from p intersects X in a connected set.
Equivalently, if $x \in X$, $x \neq p$, then the straight line segment determined by x and p
is contained in X. Generally, X is star-like if it is star-like with respect to one of its
points and star-like equivalent if it is ambiently homeomorphic to a star-like set.

Main Theorem. If G is an upper semicontinuous decomposition of E^n ($n > 1$) such
that H_G is a countable collection of 1-dimensional, star-like equivalent sets, then
$E^n/G \cong E^n$.

Received by the editors August 7, 1979.

Key words and phrases. Upper semicontinuous decomposition, shrinkable decomposition, shrinkability
criterion, star-like equivalent.
The theorem follows from Lemma 2 below, where we show that the decomposition \(G \) is shrinkable. In this setting \(G \) is shrinkable if given an open set \(U \) containing the union of the nondegenerate elements and \(\varepsilon > 0 \), then there is a homeomorphism of \(E^n \) onto itself which is the identity on \(E^n - U \) and such that the image of each nondegenerate element has diameter less than \(\varepsilon \). The classical Bing Shrinkability Criterion (see [Bi 1], [Bi 2]) allows us to conclude that the quotient map \(\pi: E^n \to E^n/G \) is approximable by homeomorphisms. Using standard techniques for shrinking decompositions with countably many nondegenerate elements we need only show that a single nondegenerate element can be shrunk without “stretching” other nondegenerate elements. That is, it suffices to verify Lemma 1.

Lemma 1. If \(g_0 \in H_G, \varepsilon > 0 \) and \(W \) is a neighborhood of \(g_0 \) in \(E^n \), then there is a homeomorphism \(h: E^n \to E^n \) such that

(a) \(h \) is the identity on \(E^n - W \),
(b) \(\text{diam } h(g_0) < \varepsilon \),
(c) if \(g \in H_G \), then either \(\text{diam } h(g) < \varepsilon \) or \(h(g) \subset N_\varepsilon(g) \), where \(N_\varepsilon(g) \) denotes the \(\varepsilon \)-neighborhood of \(g \) in \(E^n \).

For \(g_0 \in H_G \), let \(\theta: E^n \to E^n \) be a homeomorphism with \(\theta(g_0) \) star-like. Assuming that \(\overline{W} \) is compact and appealing to the uniform continuity of \(\theta^{-1} \) restricted to \(\theta(W) \), Lemma 1 is a consequence of the next result.

Lemma 2. If \(G \) is a monotone upper semicontinuous decomposition of \(E^n \), \(g_0 \in H_G \), \(g_0 \) is a 1-dimensional star-like set, \(\varepsilon > 0 \) and \(W \) is a neighborhood of \(g_0 \) in \(E^n \), then there exists a homeomorphism \(h: E^n \to E^n \) such that

(1) \(h \) is the identity on \(E^n - W \),
(2) \(\text{diam } h(g_0) < \varepsilon \),
(3) if \(g \in H_G \), then either \(\text{diam } h(g) < \varepsilon \) or \(h(g) \subset N_\varepsilon(g) \).

Proof of Lemma 2. The homeomorphism \(h \) is constructed first to satisfy (1) and (2) using techniques found in [Bi 1]. This construction is outlined below. Condition (3) will follow from a careful replacement of the neighborhood \(W \) which relies heavily on the 1-dimensionality of \(g_0 \).

Let \(g_0 \) be star-like with respect to \(x_0 \). For \(i > 1 \) let \(C_i \) be the round ball of radius \(ie/4 \) centered at \(x_0 \). Let \(m \) be the least positive integer such that \(g_0 \subset \text{int } C_m \). Since \(g_0 \) is star-like it has a neighborhood system, \(\{D_i\} \), of \(n \)-cells which are ideally star-like with respect to \(x_0 \). That is, \(\text{Bd } D_i \) is a tame \((n-1)\)-sphere and each geometric ray emanating from \(x_0 \) pierces \(\text{Bd } D_i \) in exactly one point (see [Bi 1, Lemma 3]). Using upper semicontinuity we choose from this system cells \(D_i, 1 < i < m \), such that

(a) \(g_0 = D_0 \subset \text{int } D_1 \subset D_1 \subset \cdots \subset \text{int } D_m \subset D_m \subset C_m \cap W \),
(b) if \(g \in H_G \) and \(g \cap \text{Bd } D_i \neq \emptyset \) then \(g \cap D_{i-1} = \emptyset, 1 < i < m \).

We define the action of \(h \) on each geometric ray \(R \) emanating from \(x_0 \). Let \(y_0 = x_0 \) and for \(1 < i < m \) let \(x_i = R \cap \text{Bd } C_i \) and \(y_i = R \cap \text{Bd } D_i \). Let \(f \) be the map of \(R \cap D_m \) onto \(R \cap C_m \) such that \(f(y_i) = x_i, 0 < i < m \), and taking the
segments y_iy_{i+1} linearly onto the segments x_ix_{i+1}, $0 < i < m - 1$. Define h to be
the identity on $R - D_m$ and for $x \in R \cap D_m$ let $h(x)$ be the nearer to x_0 of $x, f(x)$.
This is precisely the homeomorphism described in [Bi 1, Lemma 4].

To see that (1) is satisfied observe that h is the identity outside D_m and $D_m \subset W$.
Clearly $h(D_1) \subset C_1$ and consequently $\text{diam } h(g_0) < \text{diam } C_1 = \varepsilon/2$ and (2) is
satisfied. One important feature of h should be isolated.

If $x \in D_i - D_{i-1}$ and $h(x) \neq x$, then $h(x) \in C_i - C_{i-1}$. (*)

We now specify the restrictions on W that ensure (3). If $g_0 \subset C_1$ then no
replacement for W is needed since $h = \text{id}$. Assume that $g_0 \not\subset C_1$. Since g_0 is
1-dimensional and star-like, $g_0 \cap \text{Bd } C_1$ is compact and 0-dimensional. Find a
pairwise disjoint collection U_1, \ldots, U_r of open subsets of $\text{Bd } C_1$ which cover
$g_0 \cap \text{Bd } C_1$ and such that $\text{diam } \bar{U}_j < \varepsilon/2$, $1 < j < r$, where \bar{U}_j denotes the radical
projection of U_j from x_0 onto $\text{Bd } C_m$. Let V_j be the union of the straight line
segments connecting x_0 with points of U_j; i.e. the geometric cone over \bar{U}_j from x_0.
It follows that $V = (\bigcup_{j=1}^r V_j) \cup C_1$ is a neighborhood of g_0. We insist that W be
contained in V. The crucial feature of W is that for $2 < i < m$ each component of
$W \cap [C_i - C_{i-1}]$ has diameter less than ε.

To see that this restriction on W forces h to satisfy (3) suppose $g \in H_G$. Either
there is an index i so that $g \subset D_i - D_{i-2}$ or $g \subset E^n - D_{m-1}$. In either case, if
$K = \{x \in g|h(x) \neq x\}$, then (*) shows that for some index i, $h(K) \subset C_i - C_{i-2}$. If
$K = \emptyset$, then $h(g) = g \subset N_i(g)$. If $K \neq \emptyset$ and A is a component of K, then $h(A)$ is
contained in some component of $W \cap [C_i - C_{i-2}]$ and $\text{diam } h(A) < \varepsilon$. If $A = g$,
then $\text{diam } g < \varepsilon$. Otherwise, since g is connected, there exists a point $x \in g \cap
F(h(A))$ from which $h(A) \subset N_i(g)$. It follows that $h(g) \subset N_i(g)$. This establishes
(3) and completes the proof of Lemma 2 and the theorem.

References

[Bi 2] _____, A homeomorphism between the 3-sphere and the sum of two solid horned spheres, Ann. of
Math. (2) 56 (1952), 354–362.
[Be] Ralph J. Bean, Decompositions of E^3 with a null sequence of star-like equivalent non-degenerate
[S-W] Michael Starbird and Edythe P. Woodruff, Decompositions of E^3 with countably many