Properties of $\beta X-X$ for locally connected generalized continua
HTML articles powered by AMS MathViewer
- by George L. Cain
- Proc. Amer. Math. Soc. 79 (1980), 311-315
- DOI: https://doi.org/10.1090/S0002-9939-1980-0565361-9
- PDF | Request permission
Abstract:
Let X be a locally connected generalized continuum and let $\beta X$ denote the Stone-Δech compactification of X. In this paper are given necessary and sufficient conditions for $\beta X - X$ to be the union of a finite number of disjoint continua, and for each of these continua to be indecomposable.References
- David P. Bellamy, A non-metric indecomposable continuum, Duke Math. J. 38 (1971), 15β20. MR 271911 G. L. Cain, Jr., Continuous preimages of spaces with finite compactifications (to appear).
- R. F. Dickman Jr., A necessary and sufficient condition for $\beta X\backslash X$ to be an indecomposable continuum, Proc. Amer. Math. Soc. 33 (1972), 191β194. MR 295296, DOI 10.1090/S0002-9939-1972-0295296-6
- Leonard Gillman and Meyer Jerison, Rings of continuous functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0116199, DOI 10.1007/978-1-4615-7819-2
- Kenneth D. Magill Jr., On the remainders of certain metric spaces, Trans. Amer. Math. Soc. 160 (1971), 411β417. MR 286073, DOI 10.1090/S0002-9947-1971-0286073-4
- K. D. Magill Jr., $N$-point compactifications, Amer. Math. Monthly 72 (1965), 1075β1081. MR 185572, DOI 10.2307/2315952
- Gordon Thomas Whyburn, Analytic Topology, American Mathematical Society Colloquium Publications, Vol. 28, American Mathematical Society, New York, 1942. MR 0007095, DOI 10.1090/coll/028
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 79 (1980), 311-315
- MSC: Primary 54D35; Secondary 54D40, 54F15
- DOI: https://doi.org/10.1090/S0002-9939-1980-0565361-9
- MathSciNet review: 565361