PROPERTIES OF $\beta X - X$ FOR LOCALLY CONNECTED GENERALIZED CONTINUA

GEORGE L. CAIN, JR.

Abstract. Let X be a locally connected generalized continuum and let βX denote the Stone-Cech compactification of X. In this paper are given necessary and sufficient conditions for $\beta X - X$ to be the union of a finite number of disjoint continua, and for each of these continua to be indecomposable.

1. Introduction. R. F. Dickman has characterized those locally connected generalized continua X for which $\beta X - X$ is an indecomposable continuum in terms of the so-called strong complementation property [3]. He also observed that $\beta X - X$ is a continuum if and only if X has the complementation property. A simple consequence of the work of K. D. Magill is that the locally connected generalized continua with the complementation property are precisely those having the one-point compactification as the only finite compactification [6]. This observation suggests that perhaps certain properties characterizing spaces with n-point compactifications might also provide extensions of Dickman's results. Here we do, in fact, characterize those locally connected generalized continua X for which $\beta X - X$ has exactly n components, k of which are indecomposable. These characterizations are given in terms of an n-complementation property and a strong n-complementation property which contain the complementation property and the strong complementation property as special cases.

2. Preliminaries. We shall assume throughout that the space X is separable and metric. A continuum is a compact connected space and a generalized continuum is a locally compact connected space. A continuum is called indecomposable if it is not the union of two proper subcontinua, and a set is called conditionally compact if its closure is compact.

As usual, βX denotes the Stone-Čech compactification of X. A compactification αX is said to be finite if $\alpha X - X$ consists of a finite number of points, and in particular is called an n-point compactification if $\alpha X - X$ consists of exactly n points.

Lemma 2.1. Suppose X is locally connected and locally compact, and αX is a finite compactification of X. If $r \in \alpha X - X$ and $U \subset X$ is an open set such that $r \notin \text{cl}_{\alpha X}(X - U)$, then for any open $V \subset U$ for which $U - V$ is conditionally compact in X, $V \cup \{r\}$ is an αX-open neighborhood of r.
PROOF. If \(V \cup \{ r \} \) is not an \(\alpha X \) neighborhood of \(r \), then \(r \) is an accumulation point of \(\alpha X - V \), and hence of \(U - V \). This contradicts the conditional compactness in \(X \) of \(U - V \).

PROPOSITION 2.2. If \(X \) is a locally connected generalized continuum and \(\alpha X \) is a finite compactification of \(X \), then \(\alpha X \) is locally connected and metric.

PROOF. That \(\alpha X \) is metric is an immediate consequence of Lemma 2 of Magill [5]. It follows from (12.3), page 19 of Whyburn [7] that the continuum \(\alpha X \) cannot fail to be locally connected on only a finite set.

3. The \(n \)-complementation property.

THEOREM 3.1. If \(X \) is locally compact, then \(\beta X - X \) has at least \(n \) components if and only if \(X \) has an \(n \)-point compactification.

PROOF. First, suppose \(\beta X - X \) has at least \(n \) components. Now \(X \) is an open subset of the compact space \(\beta X \) and its complement has at least \(n \) components, so it follows from Theorem 2.1 of Cain [2] that \(X \) has an \(n \)-point compactification.

Next, suppose \(X \) has an \(n \)-point compactification \(\alpha X \). It follows at once that \(\beta X - X \) has at least \(n \) components since \(\alpha X - X \) is a continuous image of \(\beta X - X \) (Gillman and Jerison [4, Theorem 6.2, p. 92]).

COROLLARY 3.2. The remainder \(\beta X - X \) is a continuum if and only if the one-point compactification is the only finite compactification of \(X \).

DEFINITION 3.3. A space \(X \) is said to have the \(n \)-complementation property if for each compact set \(A \subset X \) there is a compact set \(K \) so that \(A \subset K \) and \(X - K \) has exactly \(n \) nonconditionally compact components.

This concept generalizes Dickman's complementation property in that a noncompact space \(X \) has the 1-complementation property if and only if it has the complementation property.

THEOREM 3.4. If \(X \) is a locally connected generalized continuum, then it has the \(n \)-complementation property if and only if it has a \(k \)-point compactification for every \(k < n \), and does not have a \(k \)-point compactification of \(k > n \).

PROOF. Suppose \(X \) has the \(n \)-complementation property. Then there is a compact \(K \subset X \) so that \(X - K = C_1 \cup C_2 \cup \ldots \cup C_n \), where the \(C_i \) are open, nonconditionally compact, and mutually disjoint. The existence of a \(k \)-point compactification for \(k < n \) is an almost immediate consequence of Theorem (2.1) of Magill [6]. We need only note that \(K \cup C_i \) is noncompact for each \(i \), since \(cl C_i \) is noncompact. The nonexistence of a \(k \)-point compactification for \(k > n \) is guaranteed by Theorem (2.6) of Magill [6].

Now assume \(X \) has an \(n \)-point compactification \(\alpha X \) but does not have an \((n + 1)\)-point compactification, and let \(A \subset X \). If \(\alpha X - X = \{ r_1, r_2, \ldots, r_n \} \), choose mutually disjoint open neighborhoods of the \(r_i \), say \(U_1, U_2, \ldots, U_n \), in such a way that \(U_i \cap A = \emptyset \) for each \(i \). Then \(K = X - \bigcup U_i \) is compact, contains \(A \), and \(X - K \) has at least \(n \) nonconditionally compact components. The space \(X \) is
locally connected, so \(X - K \) has finitely many components. If it were to have more than \(n \) nonconditionally compact components, it would follow, as argued previously, that \(X \) would have a finite compactification of more than \(n \) points. Thus \(X \) has the \(n \)-complementation property.

The next theorem is an immediate consequence of the previous two.

Theorem 3.5. If \(X \) is a locally connected generalized continuum, then \(\beta X - X \) is the union of exactly \(n \) disjoint continua if and only if \(X \) has the \(n \)-complementation property.

Corollary 3.6 (Dickman). If \(X \) is a locally connected generalized continuum, then \(\beta X - X \) is a continuum if and only if \(X \) has the complementation property.

Corollary 3.7. For \(m > 1 \), \(\beta \mathbb{R}^m - \mathbb{R}^m \) is a continuum, and \(\beta \mathbb{R}^1 - \mathbb{R}^1 \) is the union of two disjoint continua.

4. **The strong \(n \)-complementation property.**

Definition 4.1. A space \(X \) is said to have the strong \(n \)-complementation property if it contains a compact set \(K \) whose complement has at least \(n \) nonconditionally compact components and for every collection \(\{G_1, G_2, \ldots, G_n\} \) of \(n \) mutually disjoint open connected, nonconditionally compact sets, it is true that \(X - \bigcup G_i \) is compact.

This concept generalizes the strong complementation property of Dickman [3].

Proposition 4.2. If \(X \) is locally connected and has the strong \(n \)-complementation property, then it has the \(n \)-complementation property.

Proof. Let \(A \subset X \) be compact. There is a compact \(C \subset X \), so that \(X - C \) has at least \(n \) nonconditionally compact components. Let \(\hat{G}_1, \hat{G}_2, \ldots, \hat{G}_n \) be \(n \) of them. For each \(i \), define \(\tilde{G}_i = \hat{G}_i - A \). Each of the \(\tilde{G}_i \) is nonempty, open and nonconditionally compact and thus has a nonconditionally compact component \(G_i \). Hence \(X - \bigcup \tilde{G}_i \) is compact, and \(A \subset X - \bigcup \tilde{G}_i \).

Theorem 4.3. If \(X \) is a locally connected generalized continuum, then \(\beta X - X \) is the disjoint union of exactly \(n \) indecomposable continua if and only if \(X \) has the strong \(n \)-complementation property.

Proof. First, suppose \(X \) has the strong \(n \)-complementation property. Then \(X \) has a compactification \(\alpha X \) so that \(\alpha X - X = \{r_1, r_2, \ldots, r_n\} \), and from Proposition 2.2 we know that \(\alpha X \) is locally connected and metric. Choose connected sets \(U_1, U_2, \ldots, U_n \) which are open in \(\alpha X \), have mutually disjoint closures in \(\alpha X \), and have \(r_i \in U_i \) for each \(i \). Each \(\text{cl}_{\alpha X}(U_i) \) is arcwise connected, so for \(z_i \in U_i \cap X \), there is an arc \(I_i \) in \(U_i \) between \(z_i \) and \(r_i \). Thus each \(R_i = I_i - \{r_i\} \) is a ray in \(X \) and \(R_i \cap R_j = \emptyset \) for \(i \neq j \).

The \(R_i \)'s are closed in the normal space \(X \), so \(\text{cl}_{\beta X} R_i \) is homeomorphic to \(\beta R_i \) (6.9, p. 89 of Gillman and Jerison [4]). We know that for a ray \(R \), \(\beta R - R \) is an indecomposable continuum (Bellamy [1]). Letting \(R_i^* = \beta R_i - R_i = \text{cl}_{\beta X} R_i - R_i \), we have \(\bigcup R_i^* \subset \beta X - X \), and each \(R_i^* \) is an indecomposable continuum. It remains to show that \(\bigcup R_i^* = \beta X - X \).
Suppose there is a \(p \in \beta X - X \) and \(p \notin \bigcup \gamma R^* \). Then there are disjoint \(\beta X \)-open sets \(U \) and \(V \) such that \(p \in U \) and \(\text{cl}_{\beta X} R_i \subset V \). Now \(V \cap X \) is an \(X \)-open neighborhood of \(\bigcup \gamma R_i \), so there are mutually disjoint open connected sets in \(X \), say \(G_1, G_2, \ldots, G_n \), which are such that \(R_i \subset G_i \subset V \cap X \). We know from the strong \(n \)-complementation property that \(X - \bigcup \gamma G_i \) is compact, clearly contradicting the fact that \(p \in \text{cl}_{\beta X} (X - \bigcup \gamma G). \) Thus \(\bigcup \gamma R^*_p = \beta X - X \).

Now, suppose \(\beta X - X = \bigcup \gamma C_i \), where each \(C_i \) is an indecomposable continuum and \(C_i \cap C_j = \emptyset \) for \(i \neq j \). It follows from Theorem 3.1 that \(X \) has an \(n \)-point compactification \(\alpha X \). If \(X \) does not have the strong \(n \)-complementation property, then there exist mutually disjoint open connected, nonconditionally compact sets \(G_1, G_2, \ldots, G_n \) such that \(X - \bigcup \gamma G_i \) is not compact. This means that at least one \(r \in \alpha X - X \) is an accumulation point of \(X - \bigcup \gamma G_i \). Every \(p \in \alpha X - X \) is an accumulation point of \(\bigcup \gamma G_i \); otherwise there would be an \(\alpha X \) neighborhood of \(p \), say \(N \), such that \((N \cap X) \cap G_i = \emptyset \) for every \(i \), and this would imply the existence of an \((n + 1) \)-point compactification \(X \), which cannot be, according to Theorem 3.1. It follows that \(r \) is an accumulation point of some \(G_k \), and also of \(X - G_k \).

Let \(\{ U_m \} \) be a sequence of \(\alpha X \)-open, connected neighborhoods of \(r \) such that \(U_{m+1} \subset U_m \) and \(\{ r \} = \bigcap \gamma U_m \). For each \(m \), let \(K_m \) be the component of \(U_m \cap \text{cl}_{\alpha X}(G_k) \) containing \(r \). Then \(K_{m+1} \subset K_m \). Now let \(C \) be the collection of all components of \(U_m - K_m \) and define \(\mathcal{V} = \{ V \in C : r \in \text{cl}_{\alpha X}(V) \} \). Thus

\[
U_m - K_m = [\bigcup \mathcal{V}] \cup [\bigcup (C - \mathcal{V})].
\]

The set \(K_m \cup [\bigcup (C - \mathcal{V})] \) is connected.

Define \(A_m = \text{cl}_{\alpha X} [\bigcup (C - \mathcal{V})] \cup K_m \), and \(B_m = \text{cl}_{\alpha X} \bigcup \mathcal{V} \). Then \(A_m \) and \(B_m \) are nonempty continua, \(\text{cl}_{\alpha X} U_m = A_m \cup B_m \), and \(\{ A_m \}, \{ B_m \} \) are decreasing sequences.

There is a continuous function \(f : \beta X \to \alpha X \) so that \(f|X \) is the identity and \(f(\beta X - X) = \alpha X - X \) (Theorem 6.12, p. 92, Gillman and Jerison [4]). Thus \(f \) is monotone, so \(f^{-1}(A_m) \) and \(f^{-1}(B_m) \) are connected, and \(\{ f^{-1}(A_m) \} \) and \(\{ f^{-1}(B_m) \} \) are decreasing sequences of continua in \(\beta X \). It follows that \(\bigcap \gamma f^{-1}(A_m) \) and \(\bigcap \gamma f^{-1}(B_m) \) are nonempty continua, and since \(\text{cl}_{\alpha X} U_m = A_m \cup B_m \), it follows that \(\bigcap \gamma f^{-1}(A_m) \cup \bigcap \gamma f^{-1}(B_m) = f^{-1}(r) = C_r \), a component of \(\beta X - X \). Each component of \(\beta X - X \) is, however, indecomposable so this means that \(C_r = \bigcap \gamma f^{-1}(A_m) = \bigcap \gamma f^{-1}(B_m) \). This implies that \(A_m \) is a neighborhood of \(r \) and that \(B_m \) is a neighborhood of \(r \), which is a contradiction. Hence it must be true that \(X \) has the strong \(n \)-complementation property.

Corollary 4.4. If \(A = [0, +\infty) \) and \(X \) is a locally connected generalized continuum, then \(\beta X - X \) is the union of \(n \) disjoint continua each homeomorphic to \(\beta A - A \) if and only if \(X \) has the strong \(n \)-complementation property.

Corollary 4.5 (Dickman). If \(X \) is a locally connected generalized continuum, then \(\beta X - X \) is an indecomposable continuum if and only if \(X \) has the strong complementation property.
The following theorem covers the situation in which possibly some components of $\beta X - X$ are decomposable and some are indecomposable.

Theorem 4.6. Suppose X is a locally connected generalized continuum and $\beta X - X$ consists of the union of n disjoint continua. At least k of these components of $\beta X - X$ are indecomposable if and only if there is an open set $U \subset X$ such that the boundary of U is compact and $X - U$ has the strong k-complementation property.

Proof. Let αX be a compactification of X with $\alpha X - X = \{r_1, r_2, \ldots, r_n\}$.

First, assume $U \subset X$ is open, $\text{Fr}(U)$ is compact, and $X - U$ has the strong k-complementation property. It follows from Lemma 2.1 that for $n - k$ of the r_i, say r_{k+1}, \ldots, r_n, it is true that $U \cup \{r_{k+1}, \ldots, r_n\}$ is open in αX. Each r_i is a noncut point of αX, so the existence of an αX open neighborhood W of $\{r_{k+1}, \ldots, r_n\}$ such that $W \subset U \cup \{r_{k+1}, \ldots, r_n\}$ and $\alpha X - W$ is connected follows from (4.15) on page 50 of Whyburn [7]. Thus $A = X - W$ is a locally connected generalized continuum, and it has the strong k-complementation property. This means that $\beta A - A$ consists of the disjoint union of exactly k indecomposable continua. But βA is homeomorphic with $\text{cl}_{\beta X}A$, so the existence of k indecomposable continua among the components of $\beta X - X$ follows.

Next, suppose at least k of the components of $\beta X - X$ are indecomposable. Let $f: \beta X \to \alpha X$ be a map such that $f|X$ is the identity and $f(\beta X - X) = \alpha X - X$. Let $\{r_1, \ldots, r_k\}$ denote the image of the k indecomposable components. As argued in the previous paragraph, there is an αX neighborhood W of $\{r_{k+1}, \ldots, r_n\}$ so that $A = X - W$ is a locally connected generalized continuum, and $\beta A - A$ is the disjoint union of k indecomposable continua. Thus $A = X - W$ has the strong k-complementation property. It is clear that the boundary of $U = W \cap X$ is compact, so the proof is complete.

References

School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332