$\bar P=\bar R$ for maps of the interval
HTML articles powered by AMS MathViewer
- by Ethan M. Coven and G. A. Hedlund
- Proc. Amer. Math. Soc. 79 (1980), 316-318
- DOI: https://doi.org/10.1090/S0002-9939-1980-0565362-0
- PDF | Request permission
Abstract:
We show that for continuous maps of a compact interval to itself the closure of the set of periodic points coincides with the closure of the set of recurrent points.References
- George D. Birkhoff, Dynamical systems, American Mathematical Society Colloquium Publications, Vol. IX, American Mathematical Society, Providence, R.I., 1966. With an addendum by Jurgen Moser. MR 0209095
- Louis Block, Continuous maps of the interval with finite nonwandering set, Trans. Amer. Math. Soc. 240 (1978), 221–230. MR 474240, DOI 10.1090/S0002-9947-1978-0474240-2
- Ethan M. Coven and G. A. Hedlund, Continuous maps of the interval whose periodic points form a closed set, Proc. Amer. Math. Soc. 79 (1980), no. 1, 127–133. MR 560598, DOI 10.1090/S0002-9939-1980-0560598-7 E. I. Dinaburg, The relation between topological entropy and metric entropy, Soviet Math. Dokl. 11 (1970), 13-16.
- P. Erdös and A. H. Stone, Some remarks on almost periodic transformations, Bull. Amer. Math. Soc. 51 (1945), 126–130. MR 11437, DOI 10.1090/S0002-9904-1945-08289-5
- Walter Helbig Gottschalk and Gustav Arnold Hedlund, Topological dynamics, American Mathematical Society Colloquium Publications, Vol. 36, American Mathematical Society, Providence, R.I., 1955. MR 0074810, DOI 10.1090/coll/036
- Lai Sang Young, A closing lemma on the interval, Invent. Math. 54 (1979), no. 2, 179–187. MR 550182, DOI 10.1007/BF01408935
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 79 (1980), 316-318
- MSC: Primary 54H20; Secondary 58F20
- DOI: https://doi.org/10.1090/S0002-9939-1980-0565362-0
- MathSciNet review: 565362