Connected projections of blocking sets of $I^{n}\times M$
HTML articles powered by AMS MathViewer
- by Harvey Rosen
- Proc. Amer. Math. Soc. 79 (1980), 335-337
- DOI: https://doi.org/10.1090/S0002-9939-1980-0565366-8
- PDF | Request permission
Abstract:
Sufficient conditions are given for each minimal blocking set K of ${I^n} \times M$ to have the closure of its projection, $p(K)$, into ${I^n}$ connected. The construction of some examples of almost continuous functions $f:{I^n} \to M$ in the literature depends on knowing each $\overline {p(K)}$ is connected or perfect.References
- D. L. Alexander, Almost continuous functions, Doctoral Dissertation, University of Alabama, University, A1., 1979.
D. L. Alexander and B. D. Garrett, Blocking sets for almost continuous functions, Notices Amer. Math. Soc. 26 (1979), 565. Abstract 769-G18.
- Kenneth R. Kellum, On a question of Borsuk concerning non-continuous retracts. I, Fund. Math. 87 (1975), 89โ92. MR 370527, DOI 10.4064/fm-87-2-89-92
- Kenneth R. Kellum, On a question of Borsuk concerning non-continuous retracts. II, Fund. Math. 92 (1976), no.ย 2, 135โ140. MR 420540, DOI 10.4064/fm-92-2-135-140
- Kenneth R. Kellum, The equivalence of absolute almost continuous retracts and $\varepsilon$-absolute retracts, Fund. Math. 96 (1977), no.ย 3, 229โ235. MR 514981, DOI 10.4064/fm-96-3-229-235
- K. R. Kellum and B. D. Garrett, Almost continuous real functions, Proc. Amer. Math. Soc. 33 (1972), 181โ184. MR 293026, DOI 10.1090/S0002-9939-1972-0293026-5
- C. P. Rourke and B. J. Sanderson, Introduction to piecewise-linear topology, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 69, Springer-Verlag, New York-Heidelberg, 1972. MR 0350744, DOI 10.1007/978-3-642-81735-9
- J. Stallings, Fixed point theorems for connectivity maps, Fund. Math. 47 (1959), 249โ263. MR 117710, DOI 10.4064/fm-47-3-249-263
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 79 (1980), 335-337
- MSC: Primary 54C15; Secondary 54C08, 54D05
- DOI: https://doi.org/10.1090/S0002-9939-1980-0565366-8
- MathSciNet review: 565366