A characterization of normal operators using the Hilbert-Schmidt class
HTML articles powered by AMS MathViewer
- by Ritsuo Nakamoto
- Proc. Amer. Math. Soc. 79 (1980), 343-344
- DOI: https://doi.org/10.1090/S0002-9939-1980-0565369-3
- PDF | Request permission
Abstract:
A bounded linear operator N on a Hilbert space H is normal if and only if $\|NX - XN\|_2 = \|N^* X - X N^*\|_2$ for every X in the Hilbert-Schmidt class.References
- Paul R. Halmos, A Hilbert space problem book, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0208368
- Herbert Kamowitz, On operators whose spectrum lies on a circle or a line, Pacific J. Math. 20 (1967), 65–68. MR 203471, DOI 10.2140/pjm.1967.20.65
- Robert Schatten, Norm ideals of completely continuous operators, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Heft 27, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1960. MR 0119112, DOI 10.1007/978-3-642-87652-3
- Gary Weiss, The Fuglede commutativity theorem modulo operator ideals, Proc. Amer. Math. Soc. 83 (1981), no. 1, 113–118. MR 619994, DOI 10.1090/S0002-9939-1981-0619994-2
- Gary Weiss, The Fuglede commutativity theorem modulo the Hilbert-Schmidt class and generating functions for matrix operators. II, J. Operator Theory 5 (1981), no. 1, 3–16. MR 613042
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 79 (1980), 343-344
- MSC: Primary 47B15; Secondary 47B10
- DOI: https://doi.org/10.1090/S0002-9939-1980-0565369-3
- MathSciNet review: 565369