Globally stable complete minimal surfaces in $\textbf {R}^{3}$
HTML articles powered by AMS MathViewer
- by M. do Carmo and A. M. Da Silveira
- Proc. Amer. Math. Soc. 79 (1980), 345-346
- DOI: https://doi.org/10.1090/S0002-9939-1980-0565370-X
- PDF | Request permission
Abstract:
It is proved that a globally stable complete minimal surface in ${R^3}$ with finite total curvature is a plane.References
- J. L. Barbosa and M. do Carmo, On the size of a stable minimal surface in $R^{3}$, Amer. J. Math. 98 (1976), no. 2, 515–528. MR 413172, DOI 10.2307/2373899
- Robert Osserman, Global properties of minimal surfaces in $E^{3}$ and $E^{n}$, Ann. of Math. (2) 80 (1964), 340–364. MR 179701, DOI 10.2307/1970396
- Jaak Peetre, A generalization of Courant’s nodal domain theorem, Math. Scand. 5 (1957), 15–20. MR 92917, DOI 10.7146/math.scand.a-10484
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 79 (1980), 345-346
- MSC: Primary 53A10
- DOI: https://doi.org/10.1090/S0002-9939-1980-0565370-X
- MathSciNet review: 565370