IDEMPOTENT MULTIPLIERS ON SPACES OF CONTINUOUS FUNCTIONS WITH
\(p\)-SUMMABLE FOURIER TRANSFORMS

LYNETTE M. BLOOM AND WALTER R. BLOOM

Abstract. Let \(G\) denote a compact abelian group, and \(A^p\) the space of functions continuous on \(G\) and having \(p\)-summable Fourier transforms. The idempotent multipliers from \(A^p\) to \(A^q\) are characterised for \(p, q \in [1, 2]\).

Throughout \(G\) will denote a compact Hausdorff abelian group with character group \(\Gamma\). Given \(p \in [1, 2]\) we shall write \(A^p\) for the Banach space of functions continuous on \(G\) with \(p\)-summable Fourier transforms, and normed by \(\|f\| = \|f\|_\infty + \|\hat{f}\|_p\). Note that we can identify \(A^2\) with \(C\) and \(A^1\) with \(A\), the spaces of functions on \(G\) that are continuous and have absolutely convergent Fourier series respectively. An application of the Hahn-Banach theorem shows that the dual \((A^p)'\) of \(A^p\) can be identified with \(M + F\ell^p'\), where \(M\) is the space of Radon measures on \(G\) and \(F\ell^p'\) is the space of pseudomeasures on \(G\) with Fourier transforms in \(l^p'\). Here \(p'\) is the exponent conjugate to \(p\), that is, \(p' = p/(p - 1)\) with the usual convention if \(p = 1\). The duality is expressed by

\[h(f) = \mu*f(0) + \sigma*f(0), \quad f \in A^p, \]

where \(h \in (A^p)'\), \(\mu \in M\) and \(\sigma \in F\ell^p'\).

We shall write \((A^p, A^q)\) for the set of pseudomeasures that are multipliers from \(A^p\) to \(A^q\); that is, \(\sigma \in (A^p, A^q)\) if and only if for every \(f \in A^p\) there exists \(g \in A^q\) with \(\sigma*f = g\). Using the above characterisation of the dual of \(A^p\) the following result can be proved.

Lemma 1. Given \(p \in [1, 2]\) and \(q \in [p, 2]\),

The \(A^p\) spaces and their multiplier spaces have been considered previously; see [1], [2], [5] and [6]. Here we are interested in characterising the set of multipliers \(\phi \in (A^p, A^q)\) that are idempotent; that is, satisfy \(\phi * \phi = \phi\). We shall write \((A^p, A^q)_e\) for the set of all idempotent elements of \((A^p, A^q)\). In addition, we shall denote by \(J\) the set of all idempotent measures on \(G\), by \(\xi_\Xi\) the characteristic function of the set \(\Xi\), and by \(|\Xi|\) the cardinality of \(\Xi\) if \(\Xi\) is finite.

By considering Fourier transforms we see that to each \(\phi \in (A^p, A^q)\), there corresponds unique \(\Xi \subseteq \Gamma\) for which \(\hat{\phi} = \xi_\Xi\). In the case \(p = 1, q \in [1, 2]\), it is easy to see (using Lemma 1) that

Received by the editors October 20, 1978.

(A, A^q)_f = (A, A)_f = \{\phi: \hat{\phi} = \xi_\Xi \text{ for some } \Xi \subseteq \Gamma\}.

For other values of p, q, p < q, the idempotent multipliers are precisely the idempotent measures.

Proof. The first equality follows directly from Lemma 1. As for the second, consider $\phi \in (A^p, A^p)_f$. By Lemma 1 we can write $\phi = \mu - \sigma$, where $\mu \in M$ and $\sigma \in l^p$. Choose a positive integer n satisfying $2n < p' < 2(n + 1)$. Then $\sigma^{n+1} \in l^2$ and hence $\sigma^r \in L^2$ for all $r > n + 1$, where σ^r denotes the r-fold convolution of σ with itself. Now

$$
\mu = \phi + \sigma = \sum_{r=0}^{\infty} \left(\frac{s}{r}\right)^{p-r} \phi^{p-r} \ast \sigma^r = \sum_{r=0}^{n-1} \left(\frac{s}{r}\right)^{p-r} \phi \ast \sigma^r + \sigma^n
$$

(recall that $\phi^k = \phi$ for all $k > 1$) and consideration of this expression for $s = n + 1, n + 2, \ldots, 2n + 1$ gives

$$
\begin{bmatrix}
1 & (n + 1) & \ldots & (n + 1) \\
1 & (n + 2) & \ldots & (n + 2) \\
\vdots & \vdots & \ddots & \vdots \\
1 & (2n + 1) & \ldots & (2n + 1)
\end{bmatrix}
\begin{bmatrix}
\phi \\
\phi \ast \sigma \\
\vdots \\
\phi \ast \sigma^n
\end{bmatrix}
=
\begin{bmatrix}
\mu_1 \\
\mu_2 \\
\vdots \\
\mu_{n+1}
\end{bmatrix}
$$

where $\mu_i \in M$, $i = 1, 2, \ldots, n + 1$. The coefficient matrix is nonsingular; indeed using the identity $(t^{s+1} - s^n) = (t^n - s^n)$, $t > s$, it can be reduced to the upper triangular matrix (a_{ij}), where $a_{ij} = (t^{s+1} - s^n)_{i,j}$ for $i < j$. It follows that $\phi \in M$ and hence $\phi \in J$, thus showing that $(A^p, A^p)_f \subseteq J$. The reverse inclusion is clear, completing the proof of the theorem. □

For $p \in (1, 2]$, $q \in [1, p)$ the only idempotent multipliers ϕ from A^p to A^q are those given by $\phi = |s, \text{ where } s \text{ is finite. To prove this we require some preliminary results.}

Let \mathcal{K} denote the family of all cosets in Γ and \mathcal{B} the Boolean ring generated by \mathcal{K}. Every $\Xi \in \mathcal{B}$ can be written as a finite union of sets of the form $\Xi = \cap_{i=1}^{n} \Lambda_i \cap \cap_{j=n+1}^{r} \Lambda_j$, where $\Lambda_i \in \mathcal{K}$ and Λ_j denotes the complement of Λ_i. If Ξ is infinite then so must be at least one such set Ξ.

Lemma 2. Given an infinite set Π of the above type there exists a finite set \mathcal{T} with the property that $\Pi \cup \mathcal{T}$ contains an infinite coset.

Proof. First we show that a finite intersection of cosets is either empty or itself a coset. Indeed consider $\Lambda_1, \Lambda_2 \in \mathcal{K}$ such that $\Lambda_1 \cap \Lambda_2$ is nonempty. Then $\Lambda_1 = \eta_1 + \Omega_1, \Lambda_2 = \eta_2 + \Omega_2$, where Ω_1, Ω_2 are subgroups of Γ, and there exist $\chi_1 \in \Omega_1, \chi_2 \in \Omega_2$ such that $\eta_1 + \chi_1 = \eta_2 + \chi_2$. Hence

$$
\Lambda_1 \cap \Lambda_2 = (\eta_2 + \chi_2 + \Omega_1) \cap (\eta_2 + \chi_2 + \Omega_2) = \eta_2 + \chi_2 + \Omega_1 \cap \Omega_2 \in \mathcal{K}.
$$
Thus a nonempty intersection of two cosets is itself a coset and the result extends to arbitrary finite intersections by induction.

Applying this to (the nonempty set) \(\Pi \) we see that

\[
\Pi = \bigcap_{i=1}^{n} \Lambda_i \cap \Lambda,
\]

By relabelling if necessary we can assume that \(\Pi \cup T \) contains the infinite set \(\bigcap_{i=1}^{n} \Lambda_i \cap \Lambda \), where \(T \) is finite and each \(\Lambda_i \) is infinite. Now \(\Lambda_i = \eta_i + \Omega_i \), \(\Lambda = \eta + \Omega \) for some subgroups \(\Omega_i \), \(\Omega \) of \(\Gamma \). We consider the following cases:

(1) \(\bigcap_{i=1}^{n} \Omega_i \cap \Omega \) is infinite. Then \(\Pi \cup T \) contains \(\bigcap_{i=1}^{n} \Lambda_i \cap \Lambda \) which, for suitable cosets \(\Lambda_i \) of \(\Omega_i \), is nonempty; just use the fact that each \(\Lambda_i \) is a union of cosets of \(\Omega_i \). By the argument used in the first part of the proof of the lemma, \(\bigcap_{i=1}^{n} \Lambda_i \cap \Lambda \) is an infinite coset in \(\Gamma \).

(2) \(\bigcap_{i=1}^{n} \Omega_i \cap \Omega \) is finite, \(\bigcap_{i \in I} \Omega_i \cap \Omega \) is infinite for some \(I \subseteq \{1, 2, \ldots, n\} \) with \(|I| = n - 1 \). Then there are cosets \(\Lambda'' \) of \(\Omega_i \) such that \(\Pi \cup T \) contains the nonempty set \(\bigcap_{i \in I} \Lambda'' \cap \Lambda \cap \Lambda' \), where \(\{j\} = \{1, 2, \ldots, n\} \setminus I \), and \(T' = \bigcap_{i \in I} \Lambda'' \cap \Lambda \cap \Lambda_j \) is (empty or) finite. Thus \(\Pi \cup T \cup T' = \bigcap_{i \in I} \Lambda'' \cap \Lambda \) an infinite coset.

(3) \(\bigcap_{i=1}^{n} \Omega_i \cap \Omega \) is finite for all \(I \subseteq \{1, 2, \ldots, n\} \) with \(|I| = n - 1 \). In this case we return to (2) above and repeat the process.

After \(n - 1 \) steps we have that \(\Omega_i \cap \Omega \) is finite for each \(i \in \{1, 2, \ldots, n\} \) and

\[
\Pi \cup T \cup \bigcap_{i=1}^{n} (\Lambda_i \cap \Lambda) \supset \left(\bigcap_{i=1}^{n} \Lambda_i \cap \Lambda \right) \cup \left(\bigcup_{i=1}^{n} \Lambda_i \cap \Lambda \right) = \Lambda
\]

is the required infinite coset. \(\Box \)

Theorem 2. Let \(\Xi \in \mathbb{R} \) be infinite and \(p \in (1, 2] \). Then there exists a continuous function \(f \) with \(\text{supp} f \subseteq \Xi \) and \(\hat{f} \in L^p \setminus L^q \) for all \(q \in [1, p) \).

Proof. By Lemma 2 we have the existence of a finite set \(T \) such that \(\Xi \cup T \) contains an infinite coset \(\Lambda \). We shall construct \(f \) as in the statement of the theorem with \(\text{supp} \hat{f} \subseteq \Lambda \), and then the result will follow. There are two cases:

(a) The subgroup \(\Omega = -\eta + \Lambda \) has an element \(\chi \) of infinite order. Now construct Rudin-Shapiro polynomials \(f_n \) in the usual way ([7, (37.19)]) so that \(\hat{f}_n \) takes values in \(\{-1, 0, 1\} \),

\[
\text{supp} \hat{f}_n = \{0, \chi, \ldots, (2^n - 1)\chi\} \quad \text{and} \quad \|f_n\|_{\infty} < 2^{(n+1)/2}.
\]

Choose \(\chi_n \in \Omega \) so that the spectra of the functions \(\chi_n f_n \) are pairwise disjoint and put \(f = \sum_{n=0}^{\infty} (n + 1)^{-2^{-n/p}} \eta \chi_n f_n \). Then

\[
\sum_{n=0}^{\infty} (n + 1)^{-2^{-n/p}} \|\eta \chi_n f_n\|_{\infty} < \infty,
\]

so that \(f \in C \). Clearly \(\text{supp} \hat{f} \subseteq \Lambda \). That \(f \in A^p \) follows from the estimate

\[
\|\hat{f}\|_p < \sum_{n=0}^{\infty} (n + 1)^{-2^{-n/p} 2^n/p} < \infty,
\]

whereas \(\|\hat{f}\|_q = \sum_{n=0}^{\infty} (n + 1)^{-2^{-n/p} q} 2^n \) shows that \(f \notin A^q \) for any \(q < p \).
(b) $-\eta + \Lambda = \Omega$ is a torsion subgroup of Γ, in which case there is a strictly increasing sequence (Ω_n) of finite subgroups of Ω. For each n construct f_n (as in [4]) with the properties $\|f_n\|_1 = 1$ on Ω_n, supp $f_n = \Omega_n$ and $\|f_n\|_\infty = |\Omega_n|^{1/2}$. As in (a) choose $\chi_n \in \Omega$ so that the spectra of the functions $\chi_n f_n$ are pairwise disjoint and put $f = \sum_{n=0}^{\infty} (n + 1)^{-2^{-n/p}} \eta \chi_n f_n$.

Theorem 3. Let $p \in (1, 2]$, $q \in [1, p)$ be given. Then $\phi \in (A^p, A^q)_I$ if and only if $\hat{\phi} = \xi_\Xi$ for some finite set $\Xi \subseteq \Gamma$.

Proof. Sufficiency is obvious. As for the other direction, consider $\phi \in (A^p, A^q)_I$. Using $(A^p, A^q)_I \subseteq (A^p, A^p)_I$ we see from Theorem 1 that $\phi \in J$ and hence, by [3, Theorem 3], $\hat{\phi} = \xi_\Xi$ for some set Ξ belonging to the coset ring \mathcal{R} of Γ. Suppose now that Ξ is infinite. By Theorem 2 there exists $f \in C$ with supp $\hat{f} \subseteq \Xi$ and $\hat{f} \in l^p \setminus l^q$. This contradicts the assumption that $\hat{\phi} \in C\setminus l^q$.

Corollary. Suppose G is infinite and let $p \in (1, 2]$, $q \in [1, p)$ be given. Then $(A^p, A^q)_I \subseteq (A^p, A^p)_I$.

Proof. That this inclusion is strict follows from Theorem 3 together with the fact that δ_0 (the Dirac measure at 0) belongs to $(A^p, A^p)_I$.

Acknowledgement. We should like to thank Dr. John F. Price for suggesting some of the problems considered in this paper.

References

School of Mathematical and Physical Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia