BALAYAGE DEFINED BY THE NONNEGATIVE CONVEX FUNCTIONS

P. FISCHER AND J. A. R. HOLBROOK

ABSTRACT. We study the Choquet order induced on measures on a linear space by the cone of nonnegative convex functions. We are concerned mainly with discrete measures, and the following result is typical. Let \(x_1, \ldots, x_r, y_1, \ldots, y_n \), where \(r < n \), be points in \(\mathbb{R}^d \). Then
\[
\sum_{k=1}^{r} f(x_k) < \sum_{k=1}^{n} f(y_k)
\]
for all nonnegative, continuous, convex functions \(f \) if, and only if, there exists a doubly stochastic matrix \(M \) such that
\[
x_j = \sum_{k=1}^{n} m_{jk} y_k \quad (j = 1, \ldots, r).
\]

In the case \(d = 1 \), this result may be found in the work of L. Mirsky; our methods allow us to place such results in a general setting.

1. The key step. Here we deal with Baire measures (always nonnegative and finite) on a compact subset \(K \) of a Hausdorff space \(E \). We shall write \(\mu(f) \) for the integral of a continuous (real-valued) function \(f \) on \(K \) with respect to the measure \(\mu \), and \(\delta_x \) for the unit mass at \(x \in K \). When \(K \) has a convex structure, we write \(C \) for the cone of continuous convex functions on \(K \) and \(C^+ \) for the nonnegative members of \(C \).

If \(\mu(f) < \nu(f) \) for all \(f \in C^+ \), we follow a common terminology (see, e.g., P. A. Meyer [3, Chapter XI, §3]) in saying that the measure \(\nu \) is a “balayage” of \(\mu \) relative to the class \(C^+ \). The following theorem relates balayage relative to \(C^+ \) to balayage relative to \(C \).

Theorem 1. Let \(\mu, \nu \) be two Baire measures on a compact convex subset \(K \) of a locally convex topological vector space \(E \). If \(\nu \) is a balayage of \(\mu \) relative to \(C^+ \), then there exists a Baire measure \(\lambda \) such that \(\nu \) is a balayage of \(\mu + \lambda \) relative to \(C \). Furthermore we may choose \(\lambda \) to be concentrated at a point \(x_0 \in K \) if we wish: \(\lambda = (\nu(1) - \mu(1))\delta_{x_0} \).

Proof. By the Riesz representation theorem, each (nonnegative) Baire measure \(\lambda \) corresponds to a continuous linear functional \(\phi \) on \(C(K) \) such that \(\phi(f) > 0 \) for all \(f \) in the (convex) cone \(P \) of positive functions in \(C(K) \). If we find such a \(\phi \) with the additional properties...
and

\[\phi(f) < (\nu - \mu)(f) \quad (f \in C^+) \]

then \(\nu \) is a balayage of \(\mu + \lambda \) relative to \(C \), since \(C = \{ f + r1 : f \in C^+ , r \in \mathbb{R} \} \).

If \(\mu(1) = \nu(1) \) we can simply put \(\phi = 0 \). Otherwise, setting \(\alpha = \nu - \mu \), we have \(\alpha(1) > 0 \) and we can define the linear operator \(T \) on \(C(K) \) by

\[Tf = f - (\alpha(f)/\alpha(1))1. \]

Now \(f \in C^+ \) implies \(Tf \in C \) and, we claim, \(Tf \notin P \); otherwise we would have

\[0 < m = \min Tf, \quad \text{and} \quad Tf - m1 \in C^+ \]

then \(\psi \equiv 0 \) on \(C(K) \) such that \(\psi(f) < \psi(g) \)
whenever \(f \in TC^+ \) and \(g \in P \).

Since \(P \) is an open cone and \(\psi \equiv 0 \), it is clear that \(\psi(P) \), being bounded below, must be \((0, \infty)\). If we set \(\phi = (\alpha(1)/\psi(1))\psi \), then \(\phi(1) = \alpha(1) \), and it remains to show that \(\phi(f) < \alpha(f) \)
whenever \(f \in C^+ \). But in this case we have ensured that

\[\phi(Tf) < 0, \quad \text{so that} \quad \phi(f) < \phi((\alpha(f)/\alpha(1))1) = \alpha(f). \]

Finally we note that we can, if we wish, replace \(\lambda \) by its resultant \(\lambda(1)\delta_{x_0} \); more precisely, let \(x_0 \) be the barycentre of the probability measure \(\lambda(1) \) (see R. R. Phelps [5, Proposition 1.1]). By definition, \(x_0 \) is that point in \(K \) such that \(\delta_{x_0}(f) = f(x_0) \) for all continuous affine functions \(f \) on \(K \), and it is well known that the inequality \(\lambda(1)f(x_0) < \lambda(f) \) follows for all \(f \in C \). Thus we may replace \(\lambda \) by \(\lambda(1)\delta_{x_0} = (\nu(1) - \mu(1))\delta_{x_0} \).

2. Application. As we shall make clear in the remarks below, the following theorem provides a common extension of some basic results on balayage for discrete measures.

Theorem 2. Let \(x = (x_1, \ldots, x_r) \), \(y = (y_1, \ldots, y_n) \) where \(r < n \) and \(x_k, y_k \) are elements of \(\mathbb{R}^d \). Then the following are equivalent.

1. \(\sum f(x_k) < \sum f(y_k) \) for every convex continuous function \(f: K \rightarrow \mathbb{R}^+ \), where \(K \) is the convex hull in \(\mathbb{R}^d \) of the \(x \)’s and \(y \)’s.

2. \(x = [My] \), for some doubly stochastic matrix \(M \) (here \([z]\), denotes the vector formed by the first \(r \) components of the vector \(z \) and the product \(My \) is interpreted formally with \(y \) as a column vector).

Remarks. (a) In the one-dimensional case \((d = 1) \) this result comes from Ch. Davis and L. Mirsky (see [4]). In that case, the well-known relationship between doubly stochastic matrices and the Hardy-Littlewood-Pólya order allows the addition of a third equivalent statement:

\[\sum_{k=1}^r z^*_k < \sum_{k=1}^r y^*_k \]
for \(i = 1, \ldots, n \) with equality holding for \(i = n \), where \(z^* \) and \(y^* \) denote the nonincreasing rearrangements of \(z \) and \(y \).

(b) The general \(d \)-dimensional form of Theorem 2 is due to S. Sherman [7] and C. Stein (see D. Blackwell [1]) in the special case \(r = n \). Note that in this case there is no need to require nonnegative functions in (i) since the inequality is unchanged upon adding any constant to \(f \). We shall prove Theorem 2 by deriving it from the special case of Sherman and Stein.

Proof. (i) \(\Rightarrow \) (ii). In the terminology of Theorem 1, the hypothesis says that \(\nu = \sum_1^\infty \delta_{x_i} \) is a balayage of \(\mu = \sum_1^\infty \delta_{x_i} \) relative to \(C^+ \). By Theorem 1, there exists \(x_0 \) such that \(\nu \) is a balayage of \(\mu + (n - r) \delta_x \) relative to \(C \). Thus \(z = (x_1, \ldots, x_r, x_0, \ldots, x_n) \) and \(y \) satisfy the hypothesis (i) of the Sherman-Stein theorem, so that \(z = My \) for some doubly stochastic \(M \). Hence \(x = [z] = [My]_r \).

(ii) \(\Rightarrow \) (i). By the theorem of Sherman and Stein and the nonnegativity of \(f \), we have, with \(z = My \),

\[
\sum_1^n f(y_k) \geq \sum_1^n f(z_k) \geq \sum_1^r f(z_k) = \sum_1^r f(x_k).
\]

Q.E.D.

3. A variant. In [2] an analogue of the Sherman-Stein theorem is established for substochastic matrices. One form of this result may be stated as follows (cf. [2, Théorème 8]).

Theorem 3. Let \(x = (x_1, \ldots, x_n) \), \(y = (y_1, \ldots, y_n) \) where \(x_k \) and \(y_k \) are elements of \(\mathbb{R}^d \). Then the following statements are equivalent.

(i) \(\sum_{k=1}^n f(x_k) \leq \sum_{k=1}^n f(y_k) \) for every continuous convex function \(f: \mathbb{R}^d \to \mathbb{R} \) such that \(f > f(0) \).

(ii) there exists an \(n \times n \) doubly substochastic matrix \(M \) such that \(x = My \).

The following theorem extends Theorem 3 in the same way that Theorem 2 extends the Sherman-Stein theorem.

Theorem 4. Let \(x = (x_1, \ldots, x_r) \), \(y = (y_1, \ldots, y_n) \), where \(r < n \) and the \(x_k \) and \(y_k \) are elements of \(\mathbb{R}^d \). Then the following statements are equivalent.

(i) \(\sum_{k=1}^r f(x_k) \leq \sum_{k=1}^n f(y_k) \) for every continuous convex function \(f: \mathbb{R}^d \to \mathbb{R}^+ \) such that \(f > f(0) \).

(ii) there exists an \(n \times n \) doubly substochastic matrix \(M \) such that \(x = [My]_r \).

Proof. (ii) \(\Rightarrow \) (i). This follows by an obvious modification of our proof of the corresponding implication in Theorem 2.

(i) \(\Rightarrow \) (ii). For any convex continuous \(f: \mathbb{R}^d \to \mathbb{R} \) such that \(f > f(0) \) the function \(f - f(0) \) satisfies the hypotheses and the resulting inequality clearly implies that

\[
\sum_1^r f(x_i) + (n - r)f(0) \leq \sum_1^n f(y_k).
\]

Using the implication (i) \(\Rightarrow \) (ii) of Theorem 3, we see that there exists a doubly substochastic matrix \(M \) so that \((x_1, \ldots, x_r, 0, \ldots, 0) = M(y_1, \ldots, y_n)\). Q.E.D.
References

Department of Mathematics and Statistics, University of Guelph, Guelph, Ontario, Canada