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KAHLER MANIFOLDS

DAVID L. JOHNSON

Abstract. A curvature operator R is said to possess a normal form relative to some

space of curvature operators 9 if R is determined uniquely in 9 by the critical

points and critical values of the associated sectional curvature function. It is shown

that any curvature operator of Kahler type in real dimension 4 with positive-defi-

nite Ricci curvature has a normal form relative to the space of all Kahler operators.

In [2] the author showed that a generic set of curvature operators of Kahler type

with positive-definite Ricci tensor in real dimensions 4 and 6 possess normal forms,

analogous to the diagonalization of symmetric operators but related to the sectional

curvature. This concept arose out of work of Singer and Thorpe [3]; their normal

form for Einstein 4-manifolds simplified greatly many classical integral expressions

and showed plainly the relationship between curvature properties and characteristic

numbers for these manifolds.

In this note, the author hopes to rectify, in real dimension 4, the major

drawbacks of the normal form theorem proven in [2], which were the implicit

nature of the normal form itself and the involved topological methods used in its

proof.
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Topología, Facultad de Ciencias Matemáticas, Universidad de Valencia, for sup-

port provided during the preparation of this note. I am especially grateful to

Professors A. M. Naveira and A. Ferrandez for many enlightening discussions

during my stay.

1. Definitions and statement of the theorem. A curvature operator R G 'öl(V) on

a finite-dimensional inner product space F is a symmetric operator on A2( V). R is

called proper if it satisfies the standard first Bianchi identity. If F is a hermitian

complex vector space with complex structure automorphism J: V -+ V, define

/ G 61(F) by J(v A vf) = Jv AJw. R G 61(F) is called Kahler, denoted by

R G %(V),iîRJ = JR = R.

The Grassmannian G(2, V) of oriented 2-planes in F is identified with {£ G

A2(F)| |í| = 1, £ Al = 0} [3]. The sectional curvature rR: G(2, F)->R of R G

<3l(V) is then defined by rR(P) = <FF, F>.

Let 61 C 61(F) be a subspace. A proper R G 9 has a normal form relative to 61

if there is a set {F,} of critical points of the sectional curvature rR so that, if
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R' E 9 is proper and rR, has critical points at {F,} with rR,(P¡) = rR(P¡), then

R' = R.

Theorem 1.1. Let V^C2. Then each proper R E %(V) with positive-definite

Ricci tensor has a normal form relative to %(V).

2. Properties of %(V). Making the standard identification of o(V) =¿ A2(K)> the

subspace u(V) c o(V) of skew-hermitian operators is the set of all /-invariant

elements of A2(K). Define I E u(V) by identifying the operator J with an element

/ of A2(V). In a unitary basis {vx, vx. = Jvx,..., vn, vn,), I = 2,ü( A «,♦•

In [2] the following useful formulas are derived; their proofs are simple calcula-

tions.

Proposition 2.1. Let p(R): V-» F be the Ricci tensor ofR. Then if R is proper

(l)<o(R)v,w) = <R(I),vAJw>;

(2) p(R) is positive-definite if and only if </?(/), v A /« > > Ofar each v E V.

A plane P £ G(2, V) will be called holomorphic if JP - P. The set of all

holomorphic planes is clearly 2 copies ( + and — ) of CF( V).

Proposition 2.2. (l)i P E ±CP(V) js\a ¡criticalpoint of rR if and only if P is a

critical point o/*-Ä|±CP(F). In the case V ̂  C2, P is a holomorphic critical point of rR

if and only if RP = AP + B' * P, where A = rR(P) and * is the Hodge star

operator.

(2) Let V^C2. Q E G(2, V) - (±CP(V)) is a critical point of rR if and only if

RQ = A(Q + JQ- <Q, />/), where A = rR(Q). Thus (RQ, I) = 0.

Corollary 2.3. For V ^ C2, there are always at least 2 holomorphic critical

points. If p(R) is positive-definite, there are at least 3 nonholomorphic critical points

{Qi) w*tn {Qi + JQi) linearly independent.

Proof. The first statement is clear. For the second, note that each nonholomor-

phic critical point Q satisfies

Q + JQ E {£ £ u(V)\(RI, O = 0} - RI±.

Also, each £ £ RI-1, up to a scalar factor, is of the form Q + JQ for some plane

Q £ G(2, V) — (±CP(V)), since £ = avx A ©i» + bv2/\ v2. for an appropriate

choice of unitary basis. p(R) positive-definite implies that ab < 0. Choose a basis

so that a > 0, b < 0. Then, if Q = (Va o, + V- b o2.) A (Vä o,. + V- b vj,

Q + JQ = 2£. Thus RI^ is in essence the space of possible nonholomorphic

critical points of R. Let A : RI± -> 1^ (= [i E u(V)\<&, I) = 0}) be the orthogo-

nal projection, A(Ç) = £ — ¿(£, I/I. As {RI, /) > 0, A is an isomorphism.

The operator RA~X: I± -» /± is symmetric, since, for a, ß E RI±, (RA~x(Aa),

Aß/ = (Ra, Aß) = (Ra, /?> = <a, Rß) = (Aa, RA-x(Aß)}. Clearly any eigen-

vector £ of RA ~' is of the form £ = XA(Q + JQ), where Q is a critical plane of rR.

As dim(/ x) = 3 the corollary is finished.   □

3. Proof of Theorem 1.1. Let R be as in the statement of the theorem, with

critical planes {Px, P2, Qx, Q2, Q3) as given in Corollary 2.3. If R' is another
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operator with the same critical points and values, R'IX = RIX; moreover, R — R'

= T is zero on Ä/x, as (R — R')A~X = 0 (A is the same for both operators).

Thus, F(£) = p < £, RI > RI as F is a symmetric operator on u( V) with RI as the

only possible nonzero eigenvector. However, 0 = (TPX, F,> = p(Px, RI}2 with

(RI, P,> >0,thusF = 0.   □

Remark. It is possible to extend this result to all proper R G %(V), but the

proof is extremely inelegant [1].

4. An application. It is not difficult to apply the general techniques of this

analysis, though not necessarily the normal form itself, to establish the classical

Hopf conjecture in dimension 4 for Kahler manifolds, that nonnegative curvature

implies nonnegative Euler characteristic. Indeed, one need only repeat Milnor's

well-known proof in the general dimension 4 case, applied to any one critical point.

Alternately, it is straightforward to show that the algebraic properties of operators

with positive curvature are quite restricted.

Proposition 4.1. // V^C2, any proper R G K(V) with nonnegative sectional

curvature is positive semidefinite.

Proof. If R is not positive semidefinite, let £ be an eigenvector with negative

eigenvalue. £ must lie in u(V), so for an appropriate choice of unitary basis,

£ = avx A «i« + bv2 A ^z- As rR > 0, ab < 0. AiS before, choose the basis so that

a > 0, b < 0. Then Q = (Va o, 4- V - b v2.) A (Va vx. + V- b vj will satisfy

Q + JQ = 2£ and rR(Q) = (RQ, Q> = <J?£, £> < 0, contradicting the fact that

rR > 0.    □

An unpublished but well-known result of B. Kostant states that, if R is any

proper, positive semidefinite curvature operator, then the Gauss-Bonnet integrand

is nonnegative. Thus,

Corollary 4.2. If M is a 4 real-dimensional Kahler manifold with nonnegative

curvature, the Euler characteristic of M is also nonnegtive.

Remark. In a forthcoming article, Curvature and Euler characteristic for six-di-

mensional Kahler manifolds, the author is able to verify this conjecture for six-di-

mensional Kahler manifolds as well, using techniques developed in [2].
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