One-variable equational compactness in partially distributive semilattices with pseudocomplementation
HTML articles powered by AMS MathViewer
- by Sydney Bulman-Fleming and Isidore Fleischer
- Proc. Amer. Math. Soc. 79 (1980), 505-511
- DOI: https://doi.org/10.1090/S0002-9939-1980-0572290-3
- PDF | Request permission
Abstract:
A universal algebra A is called one-variable equationally compact if every system of equations with constants in A involving a single variable x, every finite subsystem of which has a solution in A, has itself a solution in A. The one-variable equationally compact semilattices with pseudocomplementation $\langle S; \wedge {,^ \ast },0\rangle$ which satisfy the partial distributive law $x \wedge {(y \wedge z)^ \ast } = (x \wedge {y^ \ast }) \vee (x \wedge {z^ \ast })$ are characterized, and as a consequence we are able to describe the one-variable compact Stone semilattices. Similar considerations yield a characterization of the one-variable equationally compact Stone algebras, extending a well known result for distributive lattices.References
- Raymond Balbes, A representation theory for prime and implicative semilattices, Trans. Amer. Math. Soc. 136 (1969), 261–267. MR 233741, DOI 10.1090/S0002-9947-1969-0233741-7
- Raymond Balbes and Philip Dwinger, Distributive lattices, University of Missouri Press, Columbia, Mo., 1974. MR 0373985
- Raymond Balbes and Alfred Horn, Stone lattices, Duke Math. J. 37 (1970), 537–545. MR 277448
- R. Beazer, A characterization of complete bi-Brouwerian lattices, Colloq. Math. 29 (1974), 55–59. MR 0335377, DOI 10.4064/cm-29-1-55-59
- Garrett Birkhoff, Lattice theory, 3rd ed., American Mathematical Society Colloquium Publications, Vol. XXV, American Mathematical Society, Providence, R.I., 1967. MR 0227053
- S. Bulman-Fleming, On equationally compact semilattices, Algebra Universalis 2 (1972), 146–151. MR 308003, DOI 10.1007/BF02945022
- Sydney Bulman-Fleming, Isidore Fleischer, and Klaus Keimel, The semilattices with distinguished endomorphisms which are equationally compact, Proc. Amer. Math. Soc. 73 (1979), no. 1, 7–10. MR 512047, DOI 10.1090/S0002-9939-1979-0512047-4
- Isidore Fleischer, Embedding a semilattice in a distributive lattice, Algebra Universalis 6 (1976), no. 1, 85–86. MR 398936, DOI 10.1007/BF02485848
- Orrin Frink, Pseudo-complements in semi-lattices, Duke Math. J. 29 (1962), 505–514. MR 140449 G. Grätzer, Universal algebra, 2nd ed., Springer-Verlag, New York, 1979.
- George Grätzer, General lattice theory, Lehrbücher und Monographien aus dem Gebiete der Exakten Wissenschaften, Mathematische Reihe, Band 52, Birkhäuser Verlag, Basel-Stuttgart, 1978. MR 504338
- G. Grätzer and H. Lakser, Equationally compact semilattices, Colloq. Math. 20 (1969), 27–30. MR 238753, DOI 10.4064/cm-20-1-27-30 G. T. Jones, Pseudocomplemented semilattices, Ph. D. Dissertation, U. C. L. A., 1972. T. Katrinák, Pseudocomplementäre Halbverbände, Mat. Časopis Sloven. Akad. Vied. 18 (1968), 121-143.
- Tibor Katriňák, Die Kennzeichnung der distributiven pseudokomplementären Halbverbände, J. Reine Angew. Math. 241 (1970), 160–179 (German). MR 260629, DOI 10.1515/crll.1970.241.160
- Tibor Katriňák, Primitive Klassen von modularen $S$-Algebren, J. Reine Angew. Math. 261 (1973), 55–70 (German). MR 392725, DOI 10.1515/crll.1973.261.55
- David Kelly, A note on equationally compact lattices, Algebra Universalis 2 (1972), 80–84. MR 307987, DOI 10.1007/BF02945012
- H. M. MacNeille, Partially ordered sets, Trans. Amer. Math. Soc. 42 (1937), no. 3, 416–460. MR 1501929, DOI 10.1090/S0002-9947-1937-1501929-X H. P. Sankappanavar, A study of congruence lattices of pseudocomplemented semilattices, Ph. D. Thesis, University of Waterloo, 1974.
- Jan Mycielski, Some compactifications of general algebras, Colloq. Math. 13 (1964), 1–9. MR 228405, DOI 10.4064/cm-13-1-1-9
- B. M. Schein, On the definition of distributive semilattices, Algebra Universalis 2 (1972), 1–2. MR 304250, DOI 10.1007/BF02945000 W. Taylor, Review of several papers on equational compactness, J. Symbolic Logic 40 (1975), 88-92.
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 79 (1980), 505-511
- MSC: Primary 06A12; Secondary 08A45
- DOI: https://doi.org/10.1090/S0002-9939-1980-0572290-3
- MathSciNet review: 572290