Goldie conditions in finite normalizing extensions
HTML articles powered by AMS MathViewer
- by Charles Lanski
- Proc. Amer. Math. Soc. 79 (1980), 515-519
- DOI: https://doi.org/10.1090/S0002-9939-1980-0572292-7
- PDF | Request permission
Abstract:
Let S be a finite normalizing extension of a ring R. If M is an S module, then M has finite uniform dimension if and only if it has finite uniform dimension when considered as an R module. Consequently, when S is a right Goldie ring, R is also a right Goldie ring. Conversely, if R is a semiprime right Goldie ring and S is a prime ring, then S is a Goldie ring. Finally, when both S and R are semiprime right Goldie rings, the quotient ring of R embeds in the quotient ring of S.References
- Edward Formanek and Arun Vinayak Jategaonkar, Subrings of Noetherian rings, Proc. Amer. Math. Soc. 46 (1974), 181–186. MR 414625, DOI 10.1090/S0002-9939-1974-0414625-5
- Joe W. Fisher, Charles Lanski, and Jae Keol Park, Gabriel dimension of finite normalizing extensions, Comm. Algebra 8 (1980), no. 16, 1493–1503. MR 585202, DOI 10.1080/00927878008822529
- B. Lemonnier, Dimension de Krull et codéviation. Application au théorème d’Eakin, Comm. Algebra 6 (1978), no. 16, 1647–1665 (French). MR 508242, DOI 10.1080/00927877808822313
- J. C. Robson and Lance W. Small, Liberal extensions, Proc. London Math. Soc. (3) 42 (1981), no. 1, 87–103. MR 602124, DOI 10.1112/plms/s3-42.1.87
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 79 (1980), 515-519
- MSC: Primary 16A34; Secondary 16A26
- DOI: https://doi.org/10.1090/S0002-9939-1980-0572292-7
- MathSciNet review: 572292