Subgroups of $ax+b$ and the splitting of triangular group schemes
HTML articles powered by AMS MathViewer
- by William C. Waterhouse
- Proc. Amer. Math. Soc. 79 (1980), 520-522
- DOI: https://doi.org/10.1090/S0002-9939-1980-0572293-9
- PDF | Request permission
Abstract:
The subgroup schemes of the $ax + b$ group are computed. This leads to a quick proof that a triangular group scheme over an algebraically closed field is a semidirect product of unipotent and diagonalizable subgroups.References
- Armand Borel, Groupes linéaires algébriques, Ann. of Math. (2) 64 (1956), 20–82 (French). MR 93006, DOI 10.2307/1969949
- Armand Borel, Linear algebraic groups, W. A. Benjamin, Inc., New York-Amsterdam, 1969. Notes taken by Hyman Bass. MR 0251042
- Michel Demazure and Pierre Gabriel, Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs, Masson & Cie, Éditeurs, Paris; North-Holland Publishing Co., Amsterdam, 1970 (French). Avec un appendice Corps de classes local par Michiel Hazewinkel. MR 0302656
- Schémas en groupes. I: Propriétés générales des schémas en groupes, Lecture Notes in Mathematics, Vol. 151, Springer-Verlag, Berlin-New York, 1970 (French). Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3); Dirigé par M. Demazure et A. Grothendieck. MR 0274458
- John Brendan Sullivan, A decomposition theorem for pro-affine solvable algebraic groups over algebraically closed fields, Amer. J. Math. 95 (1973), 221–228. MR 360614, DOI 10.2307/2373654
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 79 (1980), 520-522
- MSC: Primary 14L17; Secondary 20G15
- DOI: https://doi.org/10.1090/S0002-9939-1980-0572293-9
- MathSciNet review: 572293