Frobenius extensions of QF-$3$ rings
HTML articles powered by AMS MathViewer
- by Yoshimi Kitamura
- Proc. Amer. Math. Soc. 79 (1980), 527-532
- DOI: https://doi.org/10.1090/S0002-9939-1980-0572295-2
- PDF | Request permission
Abstract:
We investigate the inheritance of QF-3 property for ring extensions, mainly, for Frobenius extensions. Let A be a ring with identity. It is proved that a group ring $A[G]$ of A with a finite group G is left QF-3 iff A is left QF-3 and that in case A is a. G-Galois extension of the fixed subring ${A^G}$ relative to a finite group G of ring automorphism of A, A is left QF-3 iff ${A^G}$ is left QF-3.References
- Frank W. Anderson and Kent R. Fuller, Rings and categories of modules, Graduate Texts in Mathematics, Vol. 13, Springer-Verlag, New York-Heidelberg, 1974. MR 0417223
- R. R. Colby and E. A. Rutter Jr., $\textrm {QF}-3$ rings with zero singular ideal, Pacific J. Math. 28 (1969), 303–308. MR 244318
- Masatosi Ikeda and Tadasi Nakayama, On some characteristic properties of quasi-Frobenius and regular rings, Proc. Amer. Math. Soc. 5 (1954), 15–19. MR 60489, DOI 10.1090/S0002-9939-1954-0060489-9 F. Kasch, Projective Frobenius-Erweiterungen, Sitzungsber. Heidelberger Akad. Wiss. 1960/61, 89-109.
- Yoshimi Kitamura, On quasi-Frobenius extensions, Math. J. Okayama Univ. 15 (1971/72), 41–48. MR 301046
- Kenneth Louden, Maximal quotient rings of ring extensions, Pacific J. Math. 62 (1976), no. 2, 489–496. MR 407059
- Yôichi Miyashita, Finite outer Galois theory of non-commutative rings, J. Fac. Sci. Hokkaido Univ. Ser. I 19 (1966), 114–134. MR 0210752
- Bruno Müller, Quasi-Frobenius-Erweiterungen, Math. Z. 85 (1964), 345–368 (German). MR 182643, DOI 10.1007/BF01110680
- Takesi Onodera, Some studies on projective Frobenius extensions, J. Fac. Sci. Hokkaido Univ. Ser. I 18 (1964), 89–107. MR 0174589
- Hiroyuki Tachikawa, Quasi-Frobenius rings and generalizations. $\textrm {QF}-3$ and $\textrm {QF}-1$ rings, Lecture Notes in Mathematics, Vol. 351, Springer-Verlag, Berlin-New York, 1973. Notes by Claus Michael Ringel. MR 0349740
- P. Vámos, The dual of the notion of “finitely generated”, J. London Math. Soc. 43 (1968), 643–646. MR 248171, DOI 10.1112/jlms/s1-43.1.643
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 79 (1980), 527-532
- MSC: Primary 16A36; Secondary 16A56
- DOI: https://doi.org/10.1090/S0002-9939-1980-0572295-2
- MathSciNet review: 572295