Local algebraicity of some analytic hypersurface
HTML articles powered by AMS MathViewer
- by William A. Adkins
- Proc. Amer. Math. Soc. 79 (1980), 546-548
- DOI: https://doi.org/10.1090/S0002-9939-1980-0572298-8
- PDF | Request permission
Abstract:
It is proved that an analytic hypersurface germ $(X,0) \subseteq ({{\mathbf {C}}^{n + 1}},0)$, with nonsingular normalization, whose only singularities outside the origin are normal crossings of two n-manifolds is isomorphic to a germ of an algebraic variety at 0. As a corollary we find that weakly normal surfaces $V \subseteq {{\mathbf {C}}^3}$ with nonsingular normalization are locally algebraic.References
- William A. Adkins, Aldo Andreotti, and J. V. Leahy, An analogue of Oka’s theorem for weakly normal complex spaces, Pacific J. Math. 68 (1977), no. 2, 297–301. MR 463484, DOI 10.2140/pjm.1977.68.297 —, Weakly normal complex spaces (to appear). T. Gaffney, Properties of finitely determined germs, Thesis, Brandeis Univ., 1975. J. N. Mather, Finitely determined map germs, Publ. Math. Inst. Hautes Étude Sci. 35 (1968), 127-156.
- Raghavan Narasimhan, Introduction to the theory of analytic spaces, Lecture Notes in Mathematics, No. 25, Springer-Verlag, Berlin-New York, 1966. MR 0217337, DOI 10.1007/BFb0077071
- Peter Orlik, The multiplicity of a holomorphic map at an isolated critical point, Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976) Sijthoff and Noordhoff, Alphen aan den Rijn, 1977, pp. 405–474. MR 0480517
- Pierre Samuel, Algébricité de certains points singuliers algébroïdes, J. Math. Pures Appl. (9) 35 (1956), 1–6 (French). MR 75668
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 79 (1980), 546-548
- MSC: Primary 32C40; Secondary 14B05
- DOI: https://doi.org/10.1090/S0002-9939-1980-0572298-8
- MathSciNet review: 572298