A construction of ergodic BMO functions
HTML articles powered by AMS MathViewer
- by Karl Petersen
- Proc. Amer. Math. Soc. 79 (1980), 549-555
- DOI: https://doi.org/10.1090/S0002-9939-1980-0572299-X
- PDF | Request permission
Abstract:
One can explicitly construct unbounded functions having bounded mean oscillation (and in fact vanishing mean oscillation) with respect to any given ergodic measure-preserving transformation of a Lebesgue space.References
- D. V. Anosov, The additive functional homology equation that is connected with an ergodic rotation of the circles, Izv. Akad. Nauk SSSR Ser. Mat. 37 (1973), 1259–1274 (Russian). MR 0352400
- R. R. Coifman and R. Rochberg, Another characterization of BMO, Proc. Amer. Math. Soc. 79 (1980), no. 2, 249–254. MR 565349, DOI 10.1090/S0002-9939-1980-0565349-8
- Ronald R. Coifman and Guido Weiss, Maximal functions and $H^{P}$ spaces defined by ergodic transformations, Proc. Nat. Acad. Sci. U.S.A. 70 (1973), 1761–1763. MR 344417, DOI 10.1073/pnas.70.6.1761
- Jean-Pierre Conze, Équations fonctionnelles et systèmes induits en théorie ergodique, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 23 (1972), 75–82 (French). MR 320272, DOI 10.1007/BF00536692
- Mischa Cotlar, A unified theory of Hilbert transforms and ergodic theorems, Rev. Mat. Cuyana 1 (1955), 105–167 (1956) (English, with Spanish summary). MR 84632
- Manfred Denker, Christian Grillenberger, and Karl Sigmund, Ergodic theory on compact spaces, Lecture Notes in Mathematics, Vol. 527, Springer-Verlag, Berlin-New York, 1976. MR 0457675
- C. Fefferman and E. M. Stein, $H^{p}$ spaces of several variables, Acta Math. 129 (1972), no. 3-4, 137–193. MR 447953, DOI 10.1007/BF02392215
- Robert I. Jewett, The prevalence of uniquely ergodic systems, J. Math. Mech. 19 (1969/1970), 717–729. MR 0252604
- F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415–426. MR 131498, DOI 10.1002/cpa.3160140317
- Shizuo Kakutani, Induced measure preserving transformations, Proc. Imp. Acad. Tokyo 19 (1943), 635–641. MR 14222
- Wolfgang Krieger, On unique ergodicity, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971) Univ. California Press, Berkeley, Calif., 1972, pp. 327–346. MR 0393402
- John C. Oxtoby, Ergodic sets, Bull. Amer. Math. Soc. 58 (1952), 116–136. MR 47262, DOI 10.1090/S0002-9904-1952-09580-X
- Karl Endel Petersen, Brownian motion, Hardy spaces and bounded mean oscillation, London Mathematical Society Lecture Note Series, No. 28, Cambridge University Press, Cambridge-New York-Melbourne, 1977. MR 0651556
- V. Rohlin, A “general” measure-preserving transformation is not mixing, Doklady Akad. Nauk SSSR (N.S.) 60 (1948), 349–351 (Russian). MR 0024503
- Donald Sarason, Functions of vanishing mean oscillation, Trans. Amer. Math. Soc. 207 (1975), 391–405. MR 377518, DOI 10.1090/S0002-9947-1975-0377518-3
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 79 (1980), 549-555
- MSC: Primary 42B30; Secondary 28D05
- DOI: https://doi.org/10.1090/S0002-9939-1980-0572299-X
- MathSciNet review: 572299