Convex domains and Kobayashi hyperbolicity
HTML articles powered by AMS MathViewer
- by Theodore J. Barth
- Proc. Amer. Math. Soc. 79 (1980), 556-558
- DOI: https://doi.org/10.1090/S0002-9939-1980-0572300-3
- PDF | Request permission
Abstract:
A geometrically convex domain in ${{\mathbf {C}}^n}$ is Kobayashi hyperbolic if and only if it contains no complex affine lines. This contrasts with an example of a nonhyperbolic pseudoconvex domain in ${{\mathbf {C}}^2}$ containing no (nonconstant) entire holomorphic curves.References
- Robert Brody, Compact manifolds and hyperbolicity, Trans. Amer. Math. Soc. 235 (1978), 213–219. MR 470252, DOI 10.1090/S0002-9947-1978-0470252-3
- L. A. Campbell, A. Howard, and T. Ochiai, Moving holomorphic disks off analytic subsets, Proc. Amer. Math. Soc. 60 (1976), 106–108 (1977). MR 425186, DOI 10.1090/S0002-9939-1976-0425186-0
- Mark L. Green, Holomorphic maps to complex tori, Amer. J. Math. 100 (1978), no. 3, 615–620. MR 501228, DOI 10.2307/2373842
- Shoshichi Kobayashi, Hyperbolic manifolds and holomorphic mappings, Pure and Applied Mathematics, vol. 2, Marcel Dekker, Inc., New York, 1970. MR 0277770
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 79 (1980), 556-558
- MSC: Primary 32H20; Secondary 32F15, 32F99
- DOI: https://doi.org/10.1090/S0002-9939-1980-0572300-3
- MathSciNet review: 572300