Approximating maps and a Stone-Weierstrass theorem for $C^{\ast }$-algebras
HTML articles powered by AMS MathViewer
- by John W. Bunce
- Proc. Amer. Math. Soc. 79 (1980), 559-563
- DOI: https://doi.org/10.1090/S0002-9939-1980-0572301-5
- PDF | Request permission
Abstract:
Let A be a ${C^ \ast }$-algebra with identity and B a ${C^ \ast }$-subalgebra of A which separates the pure states of A. We give an easy proof of the fact that, assuming there is a sequence of norm one linear maps ${L_n}:A \to B$ such that ${L_n}(b)$ converges weakly to b for each b in B, B must equal A. As corollaries we prove that if B separates the pure states of A, then $B = A$ if B is nuclear, or if $B = C_r^ \ast ({F_2})$ and $A \subseteq VN({F_2})$, where ${F_2}$ is the free group on two generators.References
- Charles A. Akemann, The general Stone-Weierstrass problem, J. Functional Analysis 4 (1969), 277–294. MR 0251545, DOI 10.1016/0022-1236(69)90015-9
- Charles A. Akemann and Bernard Russo, Geometry of the unit sphere of a $C^{\ast }$-algebra and its dual, Pacific J. Math. 32 (1970), 575–585. MR 261365, DOI 10.2140/pjm.1970.32.575
- William B. Arveson, Subalgebras of $C^{\ast }$-algebras, Acta Math. 123 (1969), 141–224. MR 253059, DOI 10.1007/BF02392388
- William Arveson, Subalgebras of $C^{\ast }$-algebras. II, Acta Math. 128 (1972), no. 3-4, 271–308. MR 394232, DOI 10.1007/BF02392166
- Man Duen Choi and Edward G. Effros, Nuclear $C^*$-algebras and the approximation property, Amer. J. Math. 100 (1978), no. 1, 61–79. MR 482238, DOI 10.2307/2373876
- Jacques Dixmier, Les $C^{\ast }$-algèbres et leurs représentations, Cahiers Scientifiques, Fasc. XXIX, Gauthier-Villars & Cie, Éditeur-Imprimeur, Paris, 1964 (French). MR 0171173 E. G. Effros, Injectives and tensor products for convex sets and ${C^ \ast }$-algebras (NATO Institute on Facial Structure of Compact Convex Sets, University College of Swansea, Wales, July 1972).
- Uffe Haagerup, An example of a nonnuclear $C^{\ast }$-algebra, which has the metric approximation property, Invent. Math. 50 (1978/79), no. 3, 279–293. MR 520930, DOI 10.1007/BF01410082
- Robert R. Phelps, Lectures on Choquet’s theorem, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1966. MR 0193470
- A. Guyan Robertson, Best approximation in von Neumann algebras, Math. Proc. Cambridge Philos. Soc. 81 (1977), no. 2, 233–236. MR 473860, DOI 10.1017/S0305004100053305
- Shôichirô Sakai, On the Stone-Weierstrass theorem of $C^{\ast }$-algebras, Tohoku Math. J. (2) 22 (1970), 191–199. MR 301520, DOI 10.2748/tmj/1178242812 Sin-ei Takahasi, Korovkin’s theorem for ${C^ \ast }$-algebras (preprint).
- Daniel E. Wulbert, Convergence of operators and Korovkin’s theorem, J. Approximation Theory 1 (1968), 381–390. MR 235370, DOI 10.1016/0021-9045(68)90016-6
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 79 (1980), 559-563
- MSC: Primary 46L30
- DOI: https://doi.org/10.1090/S0002-9939-1980-0572301-5
- MathSciNet review: 572301