Let A be a C^*-algebra with identity and B a C^*-subalgebra of A which separates the pure states of A. Assume that B separates the pure states of A. The Stone-Weierstrass problem is to show that B must be equal to A. The main result of this paper (Theorem 3) is that B must equal A if, in addition, there is a sequence of norm one linear maps $L_n: A \rightarrow B$ such that $L_n(b)$ converges weakly to b for each b in B. In the case that A is separable, this result follows from a result of Effros [7, Theorem 11.1]. However, we offer a more elementary proof that we think is of interest. Our proof uses less specialized techniques and consists of first showing that B separates the extreme points of the unit ball of A^*, then using a general functional analytic lemma of Wulbert [13], and finally an application of Rainwater's theorem [9, p. 33].

We give two corollaries of the main theorem. Let B be a nuclear separable C^*-algebra which separates the pure states of A. The first corollary is that B must be equal to A. This result was first proved, using reduction theory, by Sakai in [11]. Let $C^*_r(F_2)$ be the C^*-algebra generated by the left regular representation of the free group on two generators and let $VN(F_2)$ be the von Neumann algebra generated by $C^*_r(F_2)$. The second corollary is that if $C^*_r(F_2) \subseteq A \subseteq VN(F_2)$ and $C^*_r(F_2)$ separates the pure states of A, then $C^*_r(F_2)$ equals A. This situation is covered by the theorem because of a slight elaboration of a result of Haagerup [8].

The paper concludes with some partial results on a conjecture of Arveson concerning convergence of a completely positive approximation method for all compact operators when the method is known to converge for all operators in an irreducible set of compacts.

Throughout the paper A^* will denote the Banach dual space of A, and $S(A)$ will denote the state space of A, i.e., the set of positive linear functionals on A of norm 1.
one. We will use e to denote the identity of a unital C^*-algebra. For f in A^* and a in A, $f \cdot a$ is the element of A^* defined by $(f \cdot a)(b) = f(ab)$ for all b in A. Let $U(A)$ denote the set of unitaries in A. For f in A^*, $|f|$ will denote the absolute value of f \cite[Definition 12.2.8]{6}. For X any Banach space, X_1 will denote the unit ball of X.

For S any convex set ext S will denote the extreme points of S. Elements of ext $S(A)$ are called pure states of A. A set B contained in A is said to separate the pure states of A if whenever $f, g \in$ ext $S(A)$ and $f|B = g|B$, then $f = g$.

We first show why the main result follows, in the case that A is separable, from \cite[Theorem 11.1]{7}. Let $B \subseteq A$, assume that B separates the pure states of A and that there exists a sequence of norm one linear maps $L_n : A \to B$ such that $L_n(b)$ converges weakly to b for each b in B. Let A_h denote the selfadjoint elements in A, and define $D : (B_h)^* \to (A_h)^*$ by $D(f)(a) = \lim L(f(a))$, where \lim is any generalized limit. Then $\|D(f)\| \leq \|f\|$, and $D(f)(b) = f(b)$ for all b in B. If $f \in S(B)$, then $\|D(f)\| = 1$ and $D(f)(e) = 1$, so by \cite[2.1.9]{6} $D(f) \in S(A)$. Hence D is a dilation in the sense of \cite[p. 20]{7}. It is well known (see \cite[Chapter 11]{6}) that if B separates the pure states of A, then the other hypotheses of \cite[Theorem 11.1]{7} are satisfied, so that $A = B$ if A is separable.

The first step in our proof is the following lemma, which is obtained by combining \cite[Theorem 2.1]{2} and \cite[Lemma 4 and its proof]{10}.

Lemma 1. Let A be a C^*-algebra with identity. If $f \in$ ext A^* then $|f| \in$ ext $S(A)$. If B is a C^*-subalgebra of A containing the identity such that $\pi|_B$ restricted to B is irreducible, then f can be written in the form $|f| \cdot u$ for some unitary u in B. Conversely, $f \cdot u \in$ ext A^* for any f in ext $S(A)$ and u in $U(A)$.

Lemma 2. If B separates the pure states of a C^*-algebra A with identity, then B separates ext A^*, each element of ext B^* has a unique extension to an element of A^*, and each element of ext A^* restricts to an element of ext B^*.

Proof. Let f, g be in ext A^* and assume $f|B = g|B$. By Lemma 1 and \cite[11.1.7 and 11.1.1]{6}, $f = |f| \cdot u$, $g = |g| \cdot v$ for u and v unitary elements of B. Then $f(v^*) = g(v^*)$ so $|f|(uv^*) = |g|(v^*) = |g|(e) = 1$. Since uv^* is unitary it follows that $vu^* - e$ is in the left kernel of $|f|$ and $|f|(a) = |f|(uv^*a)$ for all a in A. So for b in B, we have

$$|g|(b) = |g|(uv^*b) = g(v^*b)$$

$$f(v^*b) = |f|(uv^*b) = |f|(b).$$

But by Lemma 1, $|f|$ and $|g|$ are in ext $S(A)$, so by hypothesis $|f| = |g|$. Thus for a in A,

$$f(a) = |f|(ua) = |f|(uv^*a)$$

$$= |f|(va) = |g|(va) = g(a),$$

so $f = g$ and we have proved that B separates ext A^*. This fact and an elementary extreme point argument imply that each element of ext B^* has a unique extension to an element of A^*. The last statement follows from Lemma 1 and \cite[11.1.7 and 11.1.1]{6}.
Theorem 3. Let B be a unital C^*-subalgebra of a unital C^*-algebra A. Assume that B separates the pure states of A. If there exists a sequence of norm one linear maps $L_n: A \to B$ such that $L_n(b)$ converges weakly to b for each b in B, then $B = A$.

Proof. It follows from Lemma 2 and a general functional analysis argument of Wulbert [13, Lemma 1, part (i)] that $f(L_n(a))$ converges to $f(a)$ for each f in $\text{ext } A^*$ and each a in A. By Rainwater’s theorem, see [9, p. 33], this implies that $L_n(a)$ converges weakly to a for each a in A. But if $f \in A^*$ and $f|B = 0$, this then implies that $f(a) = \lim f(L_n(a)) = 0$, so B must equal A.

In particular, if there is a norm one projection of A onto B and B separates the pure states of A, then $B = A$, see [1, Theorem III.9]. The following corollary was first proved by Sakai in [11].

Corollary 4. Let B be a nuclear separable C^*-algebra unitally contained in a C^*-algebra A. If B separates the pure states of A, then $B = A$.

Proof. By [5] there is a sequence of finite-dimensional C^*-algebras M_n and unital completely positive maps $S_n: B \to M_n$, $T_n: M_n \to B$ such that $T_n \circ S_n$ converges in the point-norm topology to the identity map on B. (This can be taken as the definition of nuclearity.) By [3, Theorem 1.2.3] there is a completely positive map $S'_n: A \to M_n$ with S'_n extending S_n. Let $L_n = T_n \circ S'_n$. Then L_n has norm one and $L_n(b)$ converges to B in norm for each b in B. Theorem 3 then implies that $B = A$.

For the second corollary of Theorem 3 we need to recall and elaborate slightly on some results of Haagerup [8]. We consider the left regular representation λ of a countable discrete group G. Let $\delta_t \in l^2(G)$ be the function which is one at t and zero elsewhere. For s in G, $\lambda(s)$ is the unitary operator on $l^2(G)$ defined by $\lambda(s)\delta_t = \delta_{st}$. We denote by $C^*_\rho(G)$ the C^*-algebra generated by the $\lambda(s)$, s in G, and by $VN(G)$ the von Neumann algebra generated by $C^*_\rho(G)$. Let ϕ be a positive definite function of G. Then it is shown in [8, Lemma 1.1] that there is a completely positive map $\Phi: C^*_\rho(G) \to C^*_\lambda(G)$ such that $\Phi(\lambda(s)) = \phi(s)\lambda(s)$. The same proof shows that there is a unique ultraweakly continuous positive map $\Phi: VN(G) \to VN(G)$ such that $\Phi(\lambda(s)) = \phi(s)\lambda(s)$.

For any finitely supported function ϕ on G we can define $\Phi: VN(G) \to C^*_\lambda(G)$ by $\Phi\phi(T) = \sum s \phi(s)\lambda(s)\lambda(s)$. Clearly, $\Phi\phi$ is bounded and ultraweakly continuous.

Let G be a countable discrete group. For T in $VN(G)$, $T(f) = (T\delta_t) \cdot f$ for all f in $l^2(G)$. Conversely, if $g \in l^2(G)$ is such that g convolves $l^2(G)$ into $l^2(G)$, then g determines a bounded operator $c(g)$ in $VN(G)$ given by $c(g)(f) = g \cdot f$. Hence $VN(G)$ can be identified with the set of functions in $l^2(G)$ which convolve $l^2(G)$ into $l^2(G)$, and $\|f\| \leq \|c(f)\|$. For the results of Haagerup [8, Lemma 1.5] states that

$$\left\| \sum_{s \in F_2} f(s)\lambda(s) \right\| < 2 \left(\sum_{s \in G} |f(s)|^2 (1 + |s|^4)^{1/2} \right)^{1/2}.$$

(•)
For \(\phi \) a positive definite function on \(F_2 \) let \(\phi_n(s) = \phi(s) \) if \(|s| < n \), \(\phi_n(s) = 0 \) if \(|s| > n \). Then, by (\(\ast \)), for \(f \) a function on \(F_2 \) with finite support we have (as in [8, Lemma 1.7]) that
\[
\| M_{\phi_n}(c(f)) - M_{\phi}(c(f)) \| \leq 2K(\phi, n)\| f \|_2 \leq 2K(\phi, n)\| c(f) \|
\]
where \(K(\phi, n) = \sup_{x \in F_2} |\phi_n(s) - \phi(s)(1 + |s|)^2| \).

Now let \(c(f) \) be any element of \(VN(F_2) \). Then by the Kaplansky density theorem there is a net \(f_n \) of finitely supported functions on \(F_2 \) such that \(\| c(f_n) \| \leq \| c(f) \| \) and \(c(f_n) \) converges to \(c(f) \) in the strong operator topology. Then by the above
\[
\| M_{\phi_n}(c(f_n)) - M_{\phi}(c(f_n)) \| \leq 2K(\phi, n)\| c(f) \|
\]
But since \(M_{\phi_n} \) and \(M_{\phi} \) are ultraweakly continuous, it follows that \(\| M_{\phi_n}(c(f)) - M_{\phi}(c(f)) \| \leq 2K(\phi, n)\| c(f) \| \). Now, as in [8, Theorem 1.8], let \(\phi(\lambda) = e^{-\lambda|\cdot|} \). Then \(\phi(\lambda) \) is a positive definite function on \(F_2 \) and
\[
K(\phi, n, \lambda) = \sup_{|s| > n} e^{-\lambda|s|}(1 + |s|)^2,
\]
so \(K(\phi_n, n) \) converges to zero as \(n \) goes to infinity, for fixed \(\lambda \). Hence \(M_{\phi_n}(c(f)) \) is the norm limit of the truncated sums \(M_{\phi_n}(c(f)) \), so \(M_{\phi_n}(c(f)) \) belongs to \(C_\ast^r(F_2) \). But if \(c(f) \) is in \(C_\ast^r(F_2) \), then it was shown in [8, Theorem 1.8] that \(M_{\phi_n}(c(f)) \) converges to \(c(f) \) in norm as \(\lambda \) goes to zero. To summarize, we then have the following lemma.

Lemma 5. There is a sequence of unital completely positive ultraweakly continuous linear maps \(L_n : VN(F_2) \to C_\ast^r(F_2) \) such that \(L_n(b) \) converges to \(b \) in norm for all \(b \) in \(C_\ast^r(F_2) \).

Corollary 6. If \(A \) is a \(C^\ast \)-algebra, \(C_\ast^r(F_2) \subseteq A \subseteq VN(F_2) \) and \(C_\ast^r(F_2) \) separates the pure states of \(A \), then \(C_\ast^r(F_2) = A \).

Let \(H \) be a Hilbert space, \(K(H) \) the compact operators on \(H \), \(B(H) \) the bounded operators on \(H \). Let \(S \) be an irreducible set of compact operators on \(H \). Let \(L_n : B(H) \to B(H) \) be a sequence of unital completely positive maps such that \(L_n(s) \) converges to \(s \) in norm for each \(s \) in \(S \). W. B. Arveson has asked if it follows that \(L_n(a) \) converges to \(a \) in norm for all compact operators \(a \). We cannot answer this question, but we can prove the following two propositions along this line.

Proposition 7. Let \(S \) be an irreducible set of compact operators acting on a Hilbert space \(H \). Let \(L_n : B(H) \to B(H) \) be a sequence of unital completely positive maps such that \(L_n(s) \) converges to \(s \) in the weak operator topology for all \(s \) in \(S \). Then \(L_n(a) \) converges to \(a \) in the weak operator topology for all compact operators \(a \).

Proof. Let \(m \) be any state on \(l^\infty \) which is zero on \(c_0 \). Let \(x \) and \(y \) be in \(H \) and define \(L : B(H) \to B(H) \) by \((L(t)x, y) = m((L_n(t)x, y)) \). Then \(L \) is completely positive and \(L(t) = t \) for all \(t \) in \(S \cup \{I\} \). But by [4, Remark 2, p. 288], the set of fixed points of \(L \) is a \(C^\ast \)-algebra. Since \(S \) is irreducible this implies that \(L(a) = a \) for all compact operators \(a \). Hence \(m((L_n(a)x, y)) = (ax, y) \) for all states \(m \) on \(l^\infty \) which are zero on \(c_0 \). It follows that \(L_n(a,x, y) \) converges to \((ax, y) \), so that \(L_n(a) \) converges to \(a \) in the weak operator topology for all compact \(a \).
Proposition 8. Let S be an irreducible set of compact operators and let $L_n: B(H) \to B(H)$ be a sequence of unital completely positive maps such that $L_n(K(H)) \subseteq S$ and $L_n(s)$ converges to s in norm for each s in S. Then $L_n(a)$ converges to a in norm for each compact operator a.

Proof. By Proposition 9, $L_n(a)$ converges to a in the weak operator topology for all compact operators a. We will use this to show that if f_1 and f_2 are two states on $K(H) + CI$ such that $f_1|S = f_2|S$, then $f_1 = f_2$. By [12, Theorem 3.4] this will imply that $L_n(a)$ converges in norm to a for each compact operator a. So we assume that f_1 and f_2 are states on $K(H) + CI$ which are equal when restricted to S. Write $f_i = g_i + h_i$, where g_i and h_i are positive linear functionals with g_i ultraweakly continuous and $h_i|K(H) = 0$. Then for a in $K(H)$ we have

$$g_1(a) = \lim (g_1(L_n(a))) = \lim (f_1(L_n(a))) = \lim (f_2(L_n(a))) = \lim (g_2(L_n(a))) = g_2(a).$$

So $g_1 = g_2$ and it follows that $f_1 = f_2$.

References

8. U. Haagerup, An example of a non nuclear C*-algebra which has the metric approximation property, Invent. Math. 50 (1979), 279–293.

Department of Mathematics, University of Kansas, Lawrence, Kansas 66045