On the integrability of the maximal ergodic function
HTML articles powered by AMS MathViewer
- by Nghiêm Đă̇ng-Ngọc
- Proc. Amer. Math. Soc. 79 (1980), 565-570
- DOI: https://doi.org/10.1090/S0002-9939-1980-0572303-9
- PDF | Request permission
Abstract:
Let $G = {{\mathbf {R}}^d}$ or ${{\mathbf {Z}}^d}$ and consider an ergodic measure-preserving action of G on a probability space $(X,\mathfrak {A},P)$, let $f \in {L^1}(X,P)$ and Mf be its maximal ergodic function. Our purpose is to prove the converse of the following theorem of N. Wiener: if $|f|{\log ^ + }|f|$ is integrable then Mf is integrable. For the particular case $G = {\mathbf {Z}}$ this result was already obtained by D. Ornstein whose proof is based on induced transformations and seems to be specific to Z, our proof is based on a result of E. M. Stein on the Hardy-Littlewood maximal function on ${{\mathbf {R}}^d}$ and its analogue on ${{\mathbf {Z}}^d}$.References
- D. L. Burkholder, Successive conditional expectations of an integrable function, Ann. Math. Statist. 33 (1962), 887–893. MR 143246, DOI 10.1214/aoms/1177704457
- A. P. Calderon, A general ergodic theorem, Ann. of Math. (2) 58 (1953), 182–191. MR 55415, DOI 10.2307/1969828
- A. P. Calderon and A. Zygmund, On the existence of certain singular integrals, Acta Math. 88 (1952), 85–139. MR 52553, DOI 10.1007/BF02392130
- Richard F. Gundy, On the class $L\,\textrm {log}\,L$, martingales, and singular integrals, Studia Math. 33 (1969), 109–118. MR 243588, DOI 10.4064/sm-33-1-109-118
- Roger L. Jones, Inequalities for the ergodic maximal function, Studia Math. 60 (1977), no. 2, 111–129. MR 430208, DOI 10.4064/sm-60-2-111-129
- Donald Ornstein, A remark on the Birkhoff ergodic theorem, Illinois J. Math. 15 (1971), 77–79. MR 274719
- E. M. Stein, Note on the class $L$ $\textrm {log}$ $L$, Studia Math. 32 (1969), 305–310. MR 247534, DOI 10.4064/sm-32-3-305-310
- Norbert Wiener, The ergodic theorem, Duke Math. J. 5 (1939), no. 1, 1–18. MR 1546100, DOI 10.1215/S0012-7094-39-00501-6
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 79 (1980), 565-570
- MSC: Primary 28D10
- DOI: https://doi.org/10.1090/S0002-9939-1980-0572303-9
- MathSciNet review: 572303