Quotients of $\textbf {C}^{m}-\{0\}$ by diagonal $\textbf {C}^{\ast }$-actions
HTML articles powered by AMS MathViewer
- by Kunio Takijima
- Proc. Amer. Math. Soc. 79 (1980), 581-584
- DOI: https://doi.org/10.1090/S0002-9939-1980-0572306-4
- PDF | Request permission
Abstract:
Let ${q_1}, \ldots ,{q_m}$ be positive integers with $({q_1}, \ldots ,{q_m}) = 1$ and $\rho :{{\mathbf {C}}^ \ast } \times {{\mathbf {C}}^m} \to {{\mathbf {C}}^m},\rho (t,{z_1}, \ldots ,{z_m}) = ({t^{{q_1}}}{z_1}, \ldots ,{t^{{q_m}}}{z_m})$ the diagonal ${{\mathbf {C}}^ \ast }$-action on ${{\mathbf {C}}^m}$. Then the orbit space ${{\mathbf {C}}^m} - \{ 0\} /{{\mathbf {C}}^ \ast }$ is a normal analytic space. In this paper, we shall show that ${{\mathbf {C}}^m} - \{ 0\} /{{\mathbf {C}}^ \ast }$ has only rational singularities and, if $\delta ({q_1}, \ldots ,{q_m}) \leqslant m - 3$ and $m \geqslant 3,{{\mathbf {C}}^m} - \{ 0\} /{{\mathbf {C}}^ \ast }$ is rigid, where $\delta ({q_1}, \ldots ,{q_m})$ is the positive integer defined by ${q_1}, \ldots ,{q_m}$.References
- D. Burns, On rational singularities in dimensions $>2$, Math. Ann. 211 (1974), 237β244. MR 364672, DOI 10.1007/BF01350716
- G. Edmunds, On the orbit space of a weighted homogeneous hypersurface, Proc. London Math. Soc. (3) 29 (1974), 684β698. MR 379891, DOI 10.1112/plms/s3-29.4.684
- Harald Holmann, Komplexe RΓ€ume mit komplexen Transformations-gruppen, Math. Ann. 150 (1963), 327β360 (German). MR 150789, DOI 10.1007/BF01470762
- Walter D. Neumann, $S^{1}$-actions and the $\alpha$-invariant of their involutions, Bonn. Math. Schr. 44 (1970), iv+82. MR 317346
- David Prill, Local classification of quotients of complex manifolds by discontinuous groups, Duke Math. J. 34 (1967), 375β386. MR 210944
- Richard Randell, Quotients of complete intersections by $\textbf {C}^*$ actions, Pacific J. Math. 74 (1978), no.Β 1, 209β219. MR 486614, DOI 10.2140/pjm.1978.74.209
- Michael Schlessinger, On rigid singularities, Rice Univ. Stud. 59 (1973), no.Β 1, 147β162. MR 344519
- Kunio Takijima and Tadashi Tomaru, Local properties of quotient analytic spaces, Proc. Amer. Math. Soc. 72 (1978), no.Β 3, 461β467. MR 509235, DOI 10.1090/S0002-9939-1978-0509235-9
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 79 (1980), 581-584
- MSC: Primary 32M99; Secondary 14B05
- DOI: https://doi.org/10.1090/S0002-9939-1980-0572306-4
- MathSciNet review: 572306