A characterization of the range of a bounded linear transformation in Hilbert space
HTML articles powered by AMS MathViewer
- by George O. Golightly
- Proc. Amer. Math. Soc. 79 (1980), 591-592
- DOI: https://doi.org/10.1090/S0002-9939-1980-0572309-X
- PDF | Request permission
Abstract:
It is a theorem of Smul’jan and Mac Nerney that for B a bounded linear transformation from a complete complex inner product space $\{S,(\cdot , \cdot )\}$ to S, with adjoint transformation ${B^ \ast },B(S)$ is the set of all z in S for which there is a nonnegative number b such that for all x in $S,|(z,x){|^2} \leqslant b\left \|{B^ \ast }x\right \|{^2}$, in which case if w is that point of ${(\ker B)^ \bot }$ such that $Bw = z$ then the least such b is $\left \|w\right \|{^2}$. This paper provides another description of $B(S)$ and formula for $\left \|w\right \|{^2}$.References
- J. S. MacNerney, Hermitian moment sequences, Trans. Amer. Math. Soc. 103 (1962), 45–81. MR 150550, DOI 10.1090/S0002-9947-1962-0150550-1
- Frigyes Riesz and Béla Sz.-Nagy, Functional analysis, Frederick Ungar Publishing Co., New York, 1955. Translated by Leo F. Boron. MR 0071727
- Ju. L. Šmul′jan, Two-sided division in the ring of operators, Mat. Zametki 1 (1967), 605–610 (Russian). MR 217640
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 79 (1980), 591-592
- MSC: Primary 47A05
- DOI: https://doi.org/10.1090/S0002-9939-1980-0572309-X
- MathSciNet review: 572309