NORMALITY CAN BE RELAXED IN THE ASYMPTOTIC FUGLEDE-PUTNAM THEOREM

TAKAYUKI FURUTA

Abstract. The original form of the Fuglede-Putnam theorem states that the operator equation $AX = XB$ implies $A^*X = XB^*$ when A and B are normal. In our previous paper we have relaxed the normality in the hypotheses on A and B as follows: if A and B^* are subnormal and if X is an operator such that $AX = XB$, then $A^*X = XB^*$. We shall show asymptotic versions of this generalized Fuglede-Putnam theorem; these results are also extensions of results of Moore and Rogers.

1. An operator means a bounded linear operator on a complex Hilbert space. An operator T is called quasinormal if T commutes with T^*T, subnormal if T has a normal extension and hyponormal if $T^*T > TT^*$. The class of subnormal operators properly contains the class of quasinormal operators and is properly contained in the class of hyponormal operators [5, Problem 160, p. 101]. We have shown Theorem A [3, Theorem 1] as an extension of the Fuglede-Putnam theorem by an easy calculation.

Theorem A [3]. If A and B^* are subnormal and if X is an operator such that $AX = XB$, then $A^*X = XB^*$.

On the other hand, using techniques inspired by those of Rosenblum [9] and also employing Berberian's trick [1], Moore [6] shows the original asymptotic version of the Fuglede-Putnam theorem as follows.

Theorem B [6]. Let A and B be normal. For each $\epsilon > 0$, there exists δ such that $\|X\| < 1$ and $\|AX -XB\| < \delta$ imply $\|A^*X - XB^*\| < \epsilon$.

Moreover, scrutinizing Moore's proof, Rogers shows the following Theorems C and D analogous to Moore's in which the norm topology in Theorem B can be replaced by the strong or weak operator topology.

Theorem C [8]. If A and B are normal operators and if E is a neighborhood of 0 in the strong [resp., weak] operator topology, then there is a neighborhood D of 0 in the same topology such that the conditions $\|X\| < 1$ and $AX - XB \in D$ imply $A^*X - XB^* \in E$.

Received by the editors June 19, 1979 and, in revised form, August 23, 1979.

AMS (MOS) subject classifications (1970). Primary 47B20, 47B15; Secondary 47A20, 46B05.

Key words and phrases. Quasinormal operator, subnormal operator, hyponormal operator, operator topology.
Theorem D [8]. Let \(\psi \) be a complex-valued continuous function on the union of the spectra of the normal operators \(A \) and \(B \). For each neighborhood \(E \) of 0 in the strong [resp., weak] operator topology there is a neighborhood \(D \) of 0 in the same topology such that the conditions \(\|X\| < 1 \) and \(AX - XB \in D \) imply \(\psi(A)X - X\psi(B) \in E \).

In this paper, combining the idea used to show Theorem A with the techniques used in proving Theorems B, C and D, we shall show Theorems 1 and 2. These results are extensions of Theorems B, C and D and are asymptotic versions of Theorem A. Finally we shall pose an open problem with respect to Theorems 1 and 2.

2. First we show Theorem 1, which is an asymptotic version of the generalized Fuglede-Putnam theorem and extends Theorems B and C.

Theorem 1. Let \(A \) and \(B^* \) be subnormal operators. If \(E \) is a neighborhood of 0 in the uniform [resp. strong operator, weak operator] topology, then there is a neighborhood \(D \) of 0 in the same topology such that the conditions \(\|X\| < 1 \) and \(AX - XB \in D \) imply \(A^*X - XB^* \in E \).

Proof. The idea [Added in proof [3], Another proof of Theorem 1], together with the techniques in [6] and [8], yields the proof of the result. A normal extension \(N_A \) of \(A \) on the Hilbert space \(H \) is given by

\[
N_A = \begin{pmatrix} A & A_{12} \\ 0 & A_{22} \end{pmatrix}
\]

acting on the Hilbert space \(H \oplus H \) whose restriction to \(H \oplus \{0\} \) is \(A \) [4] and a normal one \(N_{B^*} \) of \(B^* \) on \(H \) is also given by

\[
N_{B^*} = \begin{pmatrix} B^* & B_{12} \\ 0 & B_{22} \end{pmatrix}
\]

acting on \(H \oplus H \). We define the subset \(\tilde{E} \) as follows:

\[
\tilde{E} = \left\{ \begin{pmatrix} Y_1 & Y_2 \\ Y_3 & Y_4 \end{pmatrix} : Y_k \text{ in } E \text{ (} k = 1, 2, 3, 4) \right\}
\]

in the set of operators on \(H \oplus H \). Then \(\tilde{E} \) turns out to be a neighborhood of 0 on \(H \oplus H \) in the same topology (uniform, strong or weak) that \(E \) is on \(H \). By Theorems B and C, there exists a neighborhood \(\tilde{D} \) of 0 on \(H \oplus H \) such that any operator \(\tilde{X} \) on \(H \oplus H \) with \(\|\tilde{X}\| < 1 \) and \(N_A \tilde{X} - \tilde{X}N_{B^*} \in \tilde{D} \) has \(N_{A^*} \tilde{X} - \tilde{X}N_{B^*} \in \tilde{E} \). Define \(D = \{ Y : (Y, 0) \text{ is in } \tilde{D} \} \). Then this set \(D \) turns out to be a neighborhood of 0 on \(H \) in the same topology that \(\tilde{D} \) is on \(H \oplus H \). Assume \(X \) is an operator on \(H \) with \(\|X\| < 1 \) and \(AX - XB = Y \) in \(D \). Put \(\tilde{X} = (0, Y) \) on \(H \oplus H \). Then \(\|\tilde{X}\| < 1 \) and

\[
N_A \tilde{X} - \tilde{X}N_{B^*} = \begin{pmatrix} AX - XB & 0 \\ 0 & 0 \end{pmatrix}
\]

is in \(\tilde{D} \). Hence we have

\[
N_{A^*} \tilde{X} - \tilde{X}N_{B^*} = \begin{pmatrix} A^*X - XB^* & -XB_{12} \\ A_{12}^*X & 0 \end{pmatrix}
\]
is in \tilde{E}, which implies that $A^*X - XB^*$ is in E, $-XB_{12}$ and A_{12}^*X are also in E, so the proof is complete.

In [6, Corollary 2] Moore shows Theorem D in the case of the uniform topology. Hence the following Theorem 2 is an extension of Theorem D and [6, Corollary 2].

Theorem 2. Let A and B^* be subnormal operators and ψ be a complex-valued continuous function on the union of the spectra of A and B. For each neighborhood E of 0 in the uniform [resp. strong operator, weak operator] topology, there is a neighborhood D of 0 in the same topology such that the conditions $\|X\| < 1$ and $AX - XB \in D$ imply $\psi(A)X - X\psi(B) + \phi \in E$, where ϕ is a function of A, B, ψ and X. In addition, $\phi = 0$ holds under any one of the following hypotheses:

1. A and B are both normal operators,
2. ψ is a function of z or ψ is a function of \bar{z}.

Proof. The idea of the proof is similar to the one of Theorem 1. We retain the notations of Theorem 1. By Theorem D and [6, Corollary 2], there exists a neighborhood \tilde{D} of 0 on $H \oplus H$ such that any operator \tilde{X} on $H \oplus H$ with $\|\tilde{X}\| < 1$, and $N_A\tilde{X} - \tilde{X}N_{B^*}$ in \tilde{D} has $\psi(N_A)\tilde{X} - \tilde{X}\psi(N_{B^*})$ in \tilde{E}. Define $D = \{ Y: (Y, 0) \text{ is in } \tilde{D} \}$; then this set D turns out to be a neighborhood of 0 on H in the same topology that \tilde{D} is on $H \oplus H$ as stated in the proof of Theorem 1. Assume X is an operator on H with $\|X\| < 1$ and $AX - XB = Y$ in D. Put $\tilde{X} = (X, 0)$ on $H \oplus H$. Then $\|\tilde{X}\| < 1$ and

$$N_A\tilde{X} - \tilde{X}N_{B^*} = \begin{pmatrix} AX - XB & 0 \\ 0 & 0 \end{pmatrix}$$

is in \tilde{D}. Hence we have

$$\psi(X_A)\tilde{X} - \tilde{X}\psi(N_{B^*}) = \begin{pmatrix} \psi(A)X - X\psi(B) + \phi & * \\ * & * \end{pmatrix}$$

is in \tilde{E}, which implies $\psi(A)X - X\psi(B) + \phi$ is in E, where ϕ is a function of A, B, ψ and X. The proof in the case (1) of $\phi = 0$ follows from Theorem D and [6, Corollary 2] and for the proof in the case (2) of $\phi = 0$, it is sufficient to remark that a continuous function of a triangular operator matrix is also one of the same type. Hence the proof is complete.

Remark 1. In Theorem 2, ϕ can be considered as a "perturbed term" which measures the deviation of subnormality from normality. If $\psi(z) = \bar{z}$, then $\phi = 0$ by (2) of Theorem 2, and this is just Theorem 1.

Remark 2. In Theorems 1 and 2 we cannot replace the subnormality in the hypotheses on A and B^* by the subnormality on A and B. Assume we could; then similarity for A and B would imply unitary equivalence by [3, Corollary 1]. But that is impossible because there exists a counterexample as follows: there exist two subnormal operators that are similar but not unitarily equivalent [5, Solution 156]. Hence we remark that Theorems 1 and 2 do not involve symmetric hypotheses on A and B, but rather on A and B^*. In view of this, it is natural and reasonable in Theorems B, C and D to interpret the hypothesis of normality of A and B as that of normality of A and B^*.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Finally we pose the following open question.

Open question. It is natural to ask whether subnormality can be replaced by hyponormality in Theorems 1 and 2. Modest results are cited in [10, Proposition], [2, Theorem] and [3, Corollary 2]. But we cannot solve this problem.

REFERENCES

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, HIROSAKI UNIVERSITY, BUNEYŌ-CHO 3, HIROSAKI, 036 AOMORI, JAPAN