The Zygmund condition for Bloch functions in the ball in $\textbf {C}^{n}$
HTML articles powered by AMS MathViewer
- by Joseph A. Cima and Barnet M. Weinstock
- Proc. Amer. Math. Soc. 79 (1980), 597-600
- DOI: https://doi.org/10.1090/S0002-9939-1980-0572311-8
- PDF | Request permission
Abstract:
In this paper we prove the equivalence of the Bloch condition for a holomorphic function f on the ball ${B_n}$ with the Zygmund second difference condition for a suitable primitive F of f.References
- Joseph A. Cima, The basic properties of Bloch functions, Internat. J. Math. Math. Sci. 2 (1979), no.Β 3, 369β413. MR 542955, DOI 10.1155/S0161171279000314
- Ch. Pommerenke, On Bloch functions, J. London Math. Soc. (2) 2 (1970), 689β695. MR 284574, DOI 10.1112/jlms/2.Part_{4}.689
- Walter Rudin, Holomorphic Lipschitz functions in balls, Comment. Math. Helv. 53 (1978), no.Β 1, 143β147. MR 486596, DOI 10.1007/BF02566070 R. Timoney, Bloch functions in several complex variables, Thesis, University of Illinois, 1978.
- A. Zygmund, Smooth functions, Duke Math. J. 12 (1945), 47β76. MR 12691, DOI 10.1215/S0012-7094-45-01206-3
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 79 (1980), 597-600
- MSC: Primary 32A40; Secondary 46E30
- DOI: https://doi.org/10.1090/S0002-9939-1980-0572311-8
- MathSciNet review: 572311