A REMARK ON COMPLEMENTED SUBSPACES OF UNITARY MATRIX SPACES

JONATHAN ARAZY

ABSTRACT. THEOREM A. Let P be a bounded projection in a unitary matrix space C_E . Then either PC_E or $(I - P)C_E$ contains a subspace which is isomorphic to C_E and complemented in C_E .

1. Introduction. Let E be a symmetric sequence space, i.e. a Banach space of sequences so that the standard unit vectors $\{e_n\}_{n=1}^{\infty}$ (defined by $e_n(i) = \delta_{n,i}$) form a 1-symmetric basis of E. We denote by C_E the Banach space of all compact operators x on l_2 so that the sequence $s(x) = (s_n(x))_{n=1}^{\infty}$ of s-numbers of x (i.e. the eigenvalues of $(x^*x)^{\frac{1}{2}}$) belongs to E, normed by $||x||_{C_E} = ||s(x)||_E$. The spaces C_E are called unitary matrix spaces. For their study see [3] and [5].

The main result of the present paper is Theorem A, stated in the abstract. It may be used in proving that certain unitary matrix spaces (the spaces C_p , 1 , for example) are primary. The problem of whether every unitary matrix space is primary is however still open. Theorem A also has a local version which is discussed at the end of the paper.

We use standard terminology from Banach space theory, see [6]. Also we identify operators x on l_2 with their matrices (x(i,j)) with respect to some fixed orthonormal basis in l_2 . The standard unit matrices $\{e_{n,k}\}_{n,k=1}^{\infty}$ are defined by $e_{n,k}(i,j) = \delta_{n,i} \cdot \delta_{k,j}$. If $\{i_k\}_{k=1}^{\infty}$ and $\{j_k\}_{k=1}^{\infty}$ are increasing sequences of positive integers, then $Q(\{i_k\}, \{j_k\})$ is the projection defined by

$$(Q(\lbrace i_k\rbrace, \lbrace j_k\rbrace)x)(i,j) = \begin{cases} x(i,j) & \text{if } i = i_k \text{ and } j = j_l \text{ for some } k \text{ and } l, \\ 0 & \text{otherwise.} \end{cases}$$
(1.1)

Clearly, this projection has norm one on every unitary matrix space.

Another important projection is the triangular projection T defined by

$$(Tx)(i,j) = \begin{cases} x(i,j) & \text{if } i \le j, \\ 0 & \text{otherwise.} \end{cases}$$
 (1.2)

For every symmetric sequence space E let us denote

$$T_E = \{ x \in C_E; x(i, j) = 0 \text{ if } i > j \}.$$
 (1.3)

Received by the editors August 17, 1979.

AMS (MOS) subject classifications (1970). Primary 47D15; Secondary 46B99, 47B10.

Key words and phrases. Unitary matrix spaces, symmetric sequence spaces, compact operators on Hilbert spaces, complemented subspaces, C_n -spaces.

PROPOSITION 1.1. Let E be a symmetric sequence space. Then the following are equivalent

- (i) T is bounded in C_E ;
- (ii) for every $\lambda \neq 1$ the operator $V_{\lambda} = \lambda T + I T$ is bounded in C_E ;
- (iii) T_E is isomorphic to C_E .

PROOF. The eigenvalence (i) \Leftrightarrow (ii) follows from the formula

$$T = (I - V_{\lambda})/(1 - \lambda).$$

The eigenvalence (i) \Leftrightarrow (iii) is proved in [2].

A triangle is a double sequence of the form $\{x_{i,j}\}_{1 \le i \le j \le \infty}$. A subtriangle of $\{x_{i,j}\}_{i \le j}$ is a triangle of the form $\{x_{i,j,j}\}_{k \le l}$ where $\{i_k\}$ and $\{j_l\}$ are increasing sequences with $i_k \le j_k$ for every k. If we consider a triangle $\{x_{i,j}\}_{i \le j}$ of elements of a Banach space as a basic sequence, we shall always assume that it is a basic sequence in the lexicographic ordering:

$$x_{1,1}, x_{1,2}, x_{2,2}, x_{1,3}, x_{2,3}, x_{3,3}, \dots$$
 (1.4)

DEFINITION 1.2. Let $\Delta = \{\alpha_{i,j}\}_{i < j}$ be a triangle of numbers. We denote by $L(\Delta)$ the set of all numbers α so that for some subtriangle $\{\alpha_{i_k,j_l}\}_{k < l}$ the following limits exist

$$\alpha_k = \lim_{l \to \infty} \alpha_{i_k, j_l}, \qquad \alpha = \lim_{k \to \infty} \alpha_k.$$
 (1.5)

Note that if Δ is bounded, i.e. $\sup_{i,j} |\alpha_{i,j}| < \infty$, then $L(\Delta) \neq \emptyset$. This can be proved by standard compactness arguments and a diagonal process. Note also that if $\alpha \in L(\Delta)$, then the subtriangle $\{\alpha_{i_k,j_l}\}_{k \leq l}$ can be chosen so that the convergence in (1.5) is arbitrarily fast.

2. The main lemma. The following lemma is our main tool.

LEMMA 2.1. Let E be any symmetric sequence space, and let S: $T_E \to C_E$ be a nonzero bounded operator. Let $x_{i,j} = Se_{i,j}$, $\alpha_{i,j} = x_{i,j}(i,j)$, $1 \le i \le j \le \infty$, and let $\alpha \in L(\{\alpha_{i,j}\}_{i \le j})$. Then for every $0 \le \varepsilon \le 1$ there exist increasing sequences of positive integers $\{m_\nu\}_{\nu=1}^{\infty}$ and $\{n_\nu\}_{\nu=1}^{\infty}$, satisfying $m_\nu \le n_\nu < m_{\nu+1}$ for every ν , so that if $Q = Q(\{m_\nu\}, \{n_\nu\})$ is defined by (1.1) and if we define $U = (QS - \alpha I)TQ$: $C_E \to C_E$, then $||U|| \le \varepsilon$.

PROOF. By passing to a subtriangle if necessary, we may assume that for some numbers $\{\alpha_i\}_{i=1}^{\infty}$, we have

$$|\alpha_{i,j} - \alpha_i| \le \varepsilon \cdot 8^{-i-j}, \quad |\alpha_i - \alpha| \le \varepsilon \cdot 8^{-i}.$$
 (2.1)

Now, for each fixed i, $\{e_{i,j}\}_{j=i}^{\infty}$ is isometrically equivalent to the unit vector basis of l_2 , so $x_{i,j} = Se_{i,j} \to 0$ weakly as $j \to \infty$. By standard perturbation arguments we can assume that for some increasing sequences of positive integers $\{\tau_k\}_{k=1}^{\infty}$, $\{i_k\}_{k=1}^{\infty}$ and $\{j_k\}_{k=1}^{\infty}$ with

$$\tau_k < i_k \le j_k \le \tau_{k+1}, \qquad k = 1, 2, \dots,$$
 (2.2)

we have for every $k \leq l$,

$$x_{i_{l,i}}(i,j) = 0 \quad \text{if either } \max\{i,j\} \le \tau_l \text{ or } \max\{i,j\} > \tau_{l+1}. \tag{2.3}$$

For every n, k, l with $k \le l$ we define

$$\lambda(n, k, l) = x_{i...i}(i_n, j_l). \tag{2.4}$$

Note that $\lambda(k, k, l) = \alpha_{i_k, j_l}$, and that in general $|\lambda(n, k, l)| \le ||x_{i_k, j_l}|| \le ||S||$.

We construct now an increasing sequence $\{l_{\nu}\}_{\nu=1}^{\infty}$ of positive integers and numbers $\lambda(n, k)$ so that for every $n, k \leq \nu$,

$$|\lambda(n, k, l_n) - \lambda(n, k)| \le \varepsilon \cdot 8^{-n-k-\nu}. \tag{2.5}$$

Indeed, every subsequence of $\{\lambda(n, k, l)\}_{l=\max\{n,k\}}^{\infty}$ has a further convergent subsequence. Let $\{l_i^{(1)}\}_{i=1}^{\infty}$ be an increasing sequence, and let $\lambda(1, 1)$ be such that $|\lambda(1, 1, l_i^{(1)}) - \lambda(1, 1)| \le \varepsilon \cdot 8^{-2-i}$ for every i. If $\{l_i^{(m)}\}_{i=m}^{\infty}$ and $\{\lambda(n, k)\}_{\max\{n,k\}=m}$ have been defined, let $\{\lambda(n, k)\}_{\max\{n,k\}=m+1}$ be numbers so that for some subsequence $\{l_i^{(m+1)}\}_{i=m+1}^{\infty}$ of $\{l_i^{(m)}\}_{i=m+1}^{\infty}$ we have

$$|\lambda(n, k, l_i^{(m+1)}) - \lambda(n, k)| \le \varepsilon \cdot 8^{-n-k-i}$$
(2.6)

for every i and every n, k with $\max\{n, k\} = m + 1$. By defining $l_{\nu} = l_{\nu}^{(\nu)}$, we clearly get that (2.5) holds for every n, $k \le \nu$.

Note that by (2.1),

$$\lambda(k, k) = \alpha_{i_k} \quad \text{for every } k. \tag{2.7}$$

Let n_0 and k be given and let $\nu = \max\{n_0, k\}$. Then by (2.5),

$$\left(\sum_{n=1}^{n_0} |\lambda(n,k)|^2\right)^{1/2} < \left(\sum_{n=1}^{n_0} |\lambda(n,k,l_{\nu})|^2\right)^{1/2} + \varepsilon < ||x_{i_k,j_{\nu}}|| + \varepsilon < ||S|| + \varepsilon.$$
(2.8)

It follows that for some increasing sequence $\{k_{\mu}\}_{\mu=1}^{\infty}$ of positive integers and for some subsequence of $\{l_{\nu}\}_{\nu=1}^{\infty}$ which we continue to denote by $\{l_{\nu}\}_{\nu=1}^{\infty}$ for convenience, we have $k_{\mu} \leq l_{\mu} < k_{\mu+1}$ for every μ , and

$$|\lambda(k_{\mu}, k_{\nu})| \le \varepsilon \cdot 8^{-\mu - \nu}$$
 for every $\nu < \mu$. (2.9)

We now claim that

$$\lambda(k_{\mu}, k_{\sigma}) \to 0$$
 as $\sigma \to \infty$, for every μ . (2.10)

Indeed, if (2.10) is false for some μ , then for some $a \neq 0$ and some increasing sequence $\{\sigma_t\}_{t=1}^{\infty}$, we have $|\lambda(k_{\mu}, k_{\sigma_t}) - a| \leq 2^{-t}$ for every t. Let N be such that $||S||(N+1)^{1/2} < (N+1)|a| - 1 - \varepsilon$, and choose ν so that $\nu > \max\{k_{\mu}, k_{\sigma_{2N}}\}$. Then, by (2.5),

$$||S||(N+1)^{1/2} > \left| \sum_{t=N}^{2N} x_{i_{k_{\sigma_{t}}},i_{t_{\tau}}} \right|| > \left| \sum_{t=N}^{2N} \lambda(k_{\mu}, k_{\sigma_{t}}, l_{\nu}) \right|$$

$$> \left| \sum_{t=N}^{2N} \lambda(k_{\mu}, k_{\sigma_{t}}) \right| - \sum_{t=N}^{2N} \varepsilon \cdot 8^{-\mu - \sigma_{t} - \nu}$$

$$> (N+1)|a| - \sum_{t=N}^{2N} 2^{-t} - \varepsilon > (N+1)|a| - 1 - \varepsilon. \quad (2.11)$$

This contradicts the choice of N and thus proves (2.10).

By passing to further subsequences of $\{k_{\mu}\}_{\mu=1}^{\infty}$ and $\{l_{\nu}\}_{\nu=1}^{\infty}$ if necessary, we may assume that

$$|\lambda(k_{\mu}, k_{\nu})| < \varepsilon \cdot 8^{-\mu - \nu}, \qquad \mu \neq \nu, \tag{2.12}$$

and that

$$k_{\mu} \le l_{\mu} < k_{\mu+1}, \qquad \mu = 1, 2, \dots$$
 (2.13)

Let for $\mu, \nu = 1, 2, ...$

$$m_{\mu} = i_{k_{2\mu-1}}, \qquad n_{\nu} = j_{l_{2\nu}},$$
 (2.14)

and let

$$Q = Q(\{m_n\}, \{n_n\}) \tag{2.15}$$

be the projection defined by (1.1). Note that by (2.2), (2.3), (2.13), (2.14) and (2.15), we have

$$Qx_{m,n} \in T_E, \qquad \mu \leqslant \nu. \tag{2.16}$$

Define

$$U = (QS = \alpha I)TQ, \tag{2.17}$$

where T is the triangular projection (1.2).

Let $\sum_{i,j=1}^{\infty} t_{i,j} e_{i,j}$ be a normalized element of C_E , so that $t_{i,j} \neq 0$ only for finitely many pairs (i, j). Then using (in this order) (2.13), (2.14), (2.16), the fact that for fixed i, $\{e_{i,j}\}_{j=1}^{\infty}$ are isometrically equivalent to the unit vector basis of l_2 , (2.5), (2.1) and (2.12), we get

$$\left\| U \sum_{i,j=1}^{\infty} t_{i,j} e_{i,j} \right\| = \left\| \sum_{\mu < \nu} t_{m_{\mu},n_{\nu}} \left(Q x_{m_{\mu},n_{\nu}} - \alpha e_{m_{\mu},n_{\nu}} \right) \right\|$$

$$< \left\| \sum_{\mu < \nu} t_{m_{\mu},n_{\nu}} \left(\lambda(k_{2\mu-1}, k_{2\mu-1}, l_{2\nu}) - \alpha \right) e_{m_{\mu},n_{\nu}} \right\|$$

$$+ \left\| \sum_{\mu < \nu} t_{m_{\mu},n_{\nu}} \sum_{\substack{\sigma=1 \ \sigma \neq \mu}}^{\nu} \lambda(k_{2\sigma-1}, k_{2\mu-1}, l_{2\nu}) e_{m_{\mu},n_{\nu}} \right\|$$

$$< \sum_{\mu=1}^{\infty} \left(\sum_{\nu=1}^{\infty} |t_{m_{\mu},n_{\nu}}|^{2} \cdot |\lambda(k_{2\mu-1}, k_{2\mu-1}, l_{2\nu}) - \alpha|^{2} \right)^{1/2}$$

$$+ \sum_{\mu,\sigma=1}^{\infty} \left(\sum_{\nu=\max\{\mu,\sigma\}}^{\infty} |t_{m_{\mu},n_{\nu}}|^{2} \cdot |\lambda(k_{2\sigma-1}, k_{2\mu-1}, l_{2\nu})|^{2} \right)^{1/2}$$

$$< 2\varepsilon \sum_{\mu=1}^{\infty} 8^{-\mu} + 2\varepsilon \sum_{\mu,\sigma=1}^{\infty} 8^{-\mu-\sigma} < 2\varepsilon \left(\frac{1}{7} + \frac{1}{49} \right) < \varepsilon. \quad (2.18)$$

So, $||U|| \le \varepsilon$ and the Lemma is proved. \square

COROLLARY 2.2. Let $E, S: T_E \to C_E$ and $\alpha_{i,j} = (Se_{i,j})(i,j), 1 \le i \le j < \infty$, be as in the statement of Lemma 2.1, and assume that $0 \ne \alpha \in L(\{\alpha_{i,j}\}_{i \le j})$. Then there exists a subtriangle $\{y_{\mu,\nu}\}_{\mu \le \nu}$ of $\{Se_{i,j}\}_{i \le j}$ which is $2\|S\| |\alpha|^{-1}$ -equivalent to $\{e_{\mu,\nu}\}_{\mu \le \nu}$. If, moreover, $S(T_E) \subset T_E$, then $\{y_{\mu,\nu}\}_{\mu \le \nu}$ can be chosen so that $[y_{\mu,\nu}]_{\mu \le \nu}$ is $2\|S\| |\alpha|^{-1}$ -complemented in T_E .

PROOF. Let $0 < \varepsilon < \min\{|\alpha|, \|S\|\}/20$. By Lemma 2.1, choose increasing sequences $\{m_{\mu}\}$ and $\{n_{\nu}\}$ of positive integers with $m_{\nu} < n_{\nu} < m_{\nu+1}$ for every ν , and so that if we define $Q = Q(\{m_{\nu}\}, \{n_{\nu}\})$ and $U = (QS - \alpha I)TQ$, then $\|U\| < \varepsilon$. Let $y_{\mu,\nu} = Se_{m_{\nu},n_{\nu}}, \mu < \nu$. Then for every $x = \sum_{\mu < \nu} t_{\mu,\nu} e_{m_{\nu},n_{\nu}} \in C_{E}$, we have

$$\left\| \sum_{\mu < \nu} t_{\mu,\nu} y_{\mu,\nu} \right\| = \|Sx\| > \|QSx\| > |\alpha| \cdot \|x\| - \|QSx - \alpha x\|$$

$$> (|\alpha| - \|U\|) \|x\| > (|\alpha| - \varepsilon) \|x\| > |\alpha| \cdot \|x\| / 2.$$
(2.19)

Since $\|\sum_{\mu \leqslant \nu} t_{\mu,\nu} y_{\mu,\nu}\| = \|Sx\| \leqslant \|S\| \cdot \|x\|$, we get that $\{y_{\mu,\nu}\}_{\mu \leqslant \nu}$ is $2\|S\| |\alpha|^{-1}$ -equivalent to $\{e_{m_{\mu},n_{\nu}}\}_{\mu \leqslant \nu}$. This proves the first assertion since $\{e_{m_{\mu},n_{\nu}}\}_{\mu \leqslant \nu}$ is isometrically equivalent to $\{e_{\mu,\nu}\}_{\mu \leqslant \nu}$.

Now assume that $ST_E \subset T_E$. Let $Y = [y_{\mu,\nu}]_{\mu \leq \nu} = SQT_E$, and define

$$P_0 = \alpha^{-1} (SQ - U)_{|T_E}, \tag{2.20}$$

$$V = I + \alpha^{-1}U. \tag{2.21}$$

Clearly, P_0 is a projection in T_E and $||P_0|| \le 21||S||/20|\alpha|$. Also, $||V - I|| \le |\alpha|^{-1} \varepsilon \le 1/20$, and so V is an automorphism of T_E . It follows that

$$P = V P_0 V^{-1} (2.22)$$

is a projection in T_E , $||P|| \le ||V|| \cdot ||P_0|| \cdot ||V^{-1}|| \le 2||S|| ||\alpha||^{-1}$, and since $VP_0 = \alpha^{-1}SQ_{|T_E}$, the range of P is exactly Y. \square

3. Proof of Theorem A. We are now ready to prove Theorem A stated in the abstract. We actually prove a somewhat stronger result, namely:

THEOREM 3.1. Let E be a symmetric sequence space, let X be either C_E or T_E and let P be any bounded projection in X. Then either PX or (I - P)X contains a subspace which is isomorphic to X and complemented in X.

PROOF OF THEOREM 3.1 FOR $X = T_E$. Let us denote for $1 \le i \le j \le \infty$, $a_{i,j} = Pe_{i,j}$, $b_{i,j} = (I - P)e_{i,j}$, $\alpha_{i,j} = a_{i,j}(i,j)$ and $\beta_{i,j} = b_{i,j}(i,j)$. Since $a_{i,j} + b_{i,j} = e_{i,j}$ for every $i \le j$, we have $\alpha_{i,j} + \beta_{i,j} = 1$, and thus either $|\alpha_{i,j}| > 1/2$ or $|\beta_{i,j}| > 1/2$ (or both). By Ramsey's theorem (see [4]) there exists an increasing sequence of positive integers $\{i_k\}_{k=1}^{\infty}$ so that either

$$|\alpha_{i_k,i_l}| > 1/2$$
 for every $k < l$, (3.1)

or

$$|\beta_{i_k,i_l}| > 1/2$$
 for every $k < l$. (3.2)

Without loss of generality we assume that (3.1) holds (since, otherwise (3.2) holds, and the proof is the same provided we replace P by I - P and $a_{i,l}$ by $b_{i,l}$).

Choose any $\alpha \in L(\{\alpha_{i_k,i_l}\}_{k < l})$, and note that (3.1) implies that $|\alpha| > 1/2$. Using Lemma 2.1 and Corollary 2.2 with S = P, we get a subtriangle $\{y_{\mu,\nu}\}_{\mu < \nu}$ of $\{a_{i_k,i_l}\}_{k < l}$ which is $4\|P\|$ -equivalent to $\{e_{\mu,\nu}\}_{\mu < \nu}$, and so that $[y_{\mu,\nu}]_{\mu < \nu} = Y$ is $4\|P\|$ -complemented in T_E . Since $Y \subset PT_E$, this completes the proof in this case.

PROOF OF THEOREM 3.1 FOR $X = C_E$. By the case $X = T_E$ treated above, it is enough to consider here only the spaces C_E so that $C_E \not\approx T_E$. That is, by Proposition 1.1, the spaces C_E , so that

$$V_{\lambda} = \lambda T + I - T$$
 is bounded in C_E only for $\lambda = 1$. (3.3)

Let us denote, for every $1 \le i, j < \infty$, $a_{i,j} = Pe_{i,j}$, $b_{i,j} = (I - P)e_{i,j}$, $\alpha_{i,j} = a_{i,j}(i,j)$ and $\beta_{i,j} = b_{i,j}(i,j)$. Using Ramsey's theorem once again, we get an increasing sequence $\{i_k\}_{k=1}^{\infty}$ so that either

$$|\alpha_{i_{k},i_{l}}| > 1/2$$
 for every $l < k$, (3.4)

or

$$|\beta_{i,i}| \ge 1/2$$
 for every $l < k$. (3.5)

Again, we assume without loss of generality that (3.4) holds. By passing to a subsequence of $\{i_k\}_{k=1}^{\infty}$ if necessary we may assume also that for some α with $1/2 \le |\alpha| \le |P|$ we have $L(\{\alpha_{i_k,i_l}\}_{l < k}) = \{\alpha\}$. Choose some $\gamma \in L(\{\alpha_{i_k,i_l}\}_{k < l})$ and let

$$0 < \varepsilon < ||P||/20(||P|| + 1). \tag{3.6}$$

Applying Lemma 2.1 to $S_1 = P_{|T_E|}$ and T_E we construct subsequences $\{n_r^{(1)}\}_{r=1}^{\infty}$ and $\{m_r^{(1)}\}_{r=1}^{\infty}$ of $\{i_k\}_{k=1}^{\infty}$ so that $m_r^{(1)} \le n_r^{(1)} \le m_{r+1}^{(1)}$ for every ν and so that if $Q_1 = Q(\{m_r^{(1)}\}, \{n_r^{(1)}\})$, then

$$\|(Q_1S_1 - \gamma I)TQ_1\| \le \varepsilon. \tag{3.7}$$

Clearly, $L(\{\alpha_{m_r^{(1)},n_r^{(1)}}\}_{r<\mu})=\{\alpha\}$. Now T_E is isometric in a natural way to $\tilde{T}_E=[e_{i,j}]_{j< i}$ so by applying Lemma 2.1 to $S=P_{|\tilde{T}_E}$ and to \tilde{T}_E and I-T instead of T_E and T respectively, we get subsequences $\{n_r\}_{r=1}^{\infty}$ and $\{m_r\}_{r=1}^{\infty}$ of $\{n_r^{(1)}\}_{r=1}^{\infty}$ and $\{m_r^{(1)}\}_{r=1}^{\infty}$ respectively, with $m_r \leq n_r < m_{r+1}$ for every ν , so that if $Q=Q(\{m_r\},\{n_r\})$, then

$$\|(QS - \alpha I)(I - T)Q\| \le \varepsilon. \tag{3.8}$$

Since the family $\{Q, Q_1, T\}$ is commutative, it is clear that (3.7) holds also with Q instead of Q_1 . Let

$$W = V_{(\gamma/\alpha)} \cdot Q = (\gamma T/\alpha + I - T)Q. \tag{3.9}$$

Then for every $x \in C_E$ with only finitely many nonzero coordinates,

$$\|(\alpha^{-1}QPQ - W)x\| \le \|(QS_1 - \gamma I)TQx\|/|\alpha| + \|(QS - \alpha I)(I - T)Qx\|/|\alpha|$$

$$\le 2\varepsilon \|x\|/|\alpha|.$$
(3.10)

In particular this implies that W is bounded in C_E . Let J be the isometry of C_E onto QC_E defined by $Je_{\mu,\nu} = e_{m_{\mu},n_{\nu}}$, then $J^{-1}WJ = V_{(\gamma/\alpha)}$. By the assumption (3.3) we get that $\alpha = \gamma$ and thus W = Q.

Let $U = \alpha^{-1}PJ$. Then for every $x \in C_E$,

$$||Ux|| > ||QUx|| > ||Jx|| - ||\alpha^{-1}QPQJx - QJx|| > (1 - 2\varepsilon|\alpha|^{-1})||x|| > \frac{4}{5}||x||.$$
(3.11)

It follows that U is an isomorphism (with constant $\leq 20||P||/9$) from C_E onto some subspace Z of PC_E . Let

$$R_0 = \alpha^{-1} P Q + Q - \alpha^{-1} Q P Q, \tag{3.12}$$

$$V = I + \alpha^{-1}QPQ - Q. {(3.13)}$$

Then R_0 is a bounded projection in C_E , and by (3.10), $||V - I|| \le 1/5$. So, V is an automorphism of C_E and $R = VR_0V^{-1}$ is a projection in C_E with $||R|| \le 4||P||$. Since $VR_0 = \alpha^{-1}PQ$, the range of R is Z. This completes the proof of Theorem 3.1.

4. Applications. Recall that a Banach space X is *primary* if for every bounded projection P on X, either $PX \approx X$ or $(I - P)X \approx X$. For $1 \le p < \infty$, let $C_p = C_l$, and let $C_\infty = C_{c_0}$. It is known that for $1 , <math>C_p$ is primary (see [1]). We strengthen this somewhat as follows.

COROLLARY 4.1. Let C_E be a unitary matrix space so that for some $1 \le p \le \infty$,

$$C_E \approx (C_E \oplus C_E \oplus \cdots \oplus C_E \oplus \cdots)_{l_a}$$
 (4.1)

(where if $p = \infty$, the direct sum is taken in the sense of c_0). Then C_E is primary. In particular, the spaces C_p , $1 \le p \le \infty$, are primary.

The corollary follows easily from Theorem 3.1, the decomposition method (see [6, p. 54]) and the fact (see [1]) that for every $1 \le p \le \infty$,

$$C_p \approx (C_p \oplus C_p \oplus \cdots \oplus C_p \oplus \cdots)_L$$

These arguments show that Corollary 4.1 holds also for T_E instead of C_E .

PROBLEM 4.2. Is every unitary matrix space a primary Banach space?

Let us pass to a local (i.e. finite dimensional) version of Theorem 3.1. If E is a symmetric sequence space, then C_E^n denotes the space of all $n \times n$ matrices with the norm induced from C_E . Let $\{A_n\}_{n=1}^{\infty}$ be pairwise disjoint subsets of the positive integers so that A_n has exactly n elements, and let

$$S_E = \left\{ x \in C_E; \, x(i,j) = 0 \text{ if } (i,j) \notin \bigcup_{n=1}^{\infty} A_n \times A_n \right\}. \tag{4.2}$$

 S_E can be considered in the obvious way as the direct sum $S_E = (\sum_{n=1}^{\infty} \bigoplus C_E^n)_E$. The importance of S_E stems from the easily proved fact that C_E is finitely represented in S_E .

Using the same ideas as in the proofs of Lemma 2.1 and Theorem 3.1, we are able to prove the following results.

COROLLARY 4.2. Let k be a positive integer and let $1 \le M \le \infty$. Then there exists a positive integer n = n(k, M) so that if E is any symmetric sequence space and if P is any projection in C_E^n with $||P|| \le M$, then either PC_E^n or $(I - P)C_E^n$ contains a subspace which is 4(M + 1)-isomorphic to C_E^k and 4(M + 1)-complemented in C_E^n .

COROLLARY 4.3. Let E be any symmetric sequence space and let P be a bounded projection in S_E . Then either PS_E or $(I - P)S_E$ contains a subspace which is isomorphic to S_E and complemented in S_E .

COROLLARY 4.4. For $1 \le p \le \infty$, the space $S_P = (\sum_{n=1}^{\infty} \bigoplus C_p^n)_{l_i}$ is primary.

Here, as before, if $p = \infty$ the direct sum is taken in the sense of c_0 .

In proving Corollary 4.2 we use Ramsey's theorem for finite sets many times. The estimate on the growth of n as a function of k we obtain is therefore very bad. In proving Corollary 4.3, we also use the fact (easily proved by the decomposition method) that if $\{n_k\}_{k=1}^{\infty}$ is any sequence of positive integers so that $\sup_k n_k = \infty$, then $S_E \approx (\sum_{k=1}^{\infty} \bigoplus C_E^{n_k})_E$.

Problem 4.5. Let E be a symmetric sequence space. Is S_E a primary Banach space?

REFERENCES

- 1. J. Arazy, On large subspaces of Schatten p-classes, Compositio Math. (to appear).
- 2. _____, Some remarks on interpolation theorems and the boundness of the triangular projection in unitary matrix spaces, Integral Equations Operator Theory 1 (1978), 453-495.
- 3. I. C. Gohberg and M. G. Krein, Introduction to the theory of linear non self adjoint operators, Transl. Math. Mono., vol. 18, Amer. Math. Soc., Providence, R. I., 1969; reprinted 1978.
 - 4. M. Hall, Jr., Combinational theory, Blaisdell, Waltham, Mass., 1967.
- 5. S. Kwapien and A. Pekczyński, The main triangle projection in matrix spaces and its applications, Studia Math. 34 (1970), 43-68.
- 6. J. Lindenstrauss and L. Tzafriri, Classical Banach spaces 1, sequences spaces, Springer-Verlag, Berlin and New York, 1977.

DEPARTMENT OF PURE MATHEMATICS, THE WEIZMANN INSTITUTE OF SCIENCE, REHOVOT, ISRAEL

Current address: Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801