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A REMARK ON COMPLEMENTED SUBSPACES OF

UNITARY MATRIX SPACES

JONATHAN ARAZY

Abstract. Theorem A. Let P be a bounded projection in a unitary matrix space CE.

Then either PCE or (I - P)CE contains a subspace which is isomorphic to CE and

complemented in CE.

1. Introduction. Let F be a symmetric sequence space, i.e. a Banach space of

sequences so that the standard unit vectors {e„}"_i (defined by e„(i) = 8Hi) form a

1-symmetric basis of E. We denote by CE the Banach space of all compact

operators x on l2 so that the sequence s(x) = (s„(x))f_, of j-numbers of x (i.e. the

eigenvalues of (x*x)*) belongs to E, normed by ||x||c = ||i(x)||£. The spaces CE

are called unitary matrix spaces. For their study see [3] and [5].

The main result of the present paper is Theorem A, stated in the abstract. It may

be used in proving that certain unitary matrix spaces (the spaces Cp, 1 < p < oo,

for example) are primary. The problem of whether every unitary matrix space is

primary is however still open. Theorem A also has a local version which is

discussed at the end of the paper.

We use standard terminology from Banach space theory, see [6]. Also we identify

operators x on l2 with their matrices (x(i,j)) with respect to some fixed orthonor-

mal basis in l2. The standard unit matrices {enk}™¿_x are defined by enJc(i,j') = 8ni

•8kj. If {»*}"_i and {jk}f-\ are increasing sequences of positive integers, then

(?({'*}> Uk)) is me projection defined by

{0     otherwise. (1.1)

Clearly, this projection has norm one on every unitary matrix space.

Another important projection is the triangular projection T defined by

(Tx)(ij) = ifj) *'<y. (u)
10   otherwise.

For every symmetric sequence space F let us denote

TE = {x G CE, x(i,j) = 0 if i >j}. (1.3)
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Proposition 1.1. Let E be a symmetric sequence space. Then the following are

equivalent

(i) T is bounded in CE;

(ii) for every X =£ 1 the operator Vx = XT + I — T is bounded in CE;

(iii) TE is isomorphic to CE.

Proof. The eigenvalence (i) <=> (ii) follows from the formula

T = (I-Vx)/(l-X).

The eigenvalence (i) <=> (iii) is proved in [2].   □

A triangle is a double sequence of the form {xiji}x<j<j<ao. A subtriangle of

ixij}i<j *s a triangle of the form {xitJi}k<l where {ik) and {/,} are increasing

sequences with ik < jk for every k. If we consider a triangle {xt «}/<< of elements of

a Banach space as a basic sequence, we shall always assume that it is a basic

sequence in the lexicographic ordering:

-*1,1> -*-l,2> *2,2> -*1,3> *2,3' *3,3> • • • • (L4)

Definition 1.2. Let A = {a,7}i<y be a triangle of numbers. We denote by L(A)

the set of all numbers a so that for some subtriangle {aikJl}k<l the following limits

exist

ak = lim a¡ j        a =  lim  ak. (1.5)
/-»oo *:-»oo

Note that if A is bounded, i.e. supiy|a,v| < oo, then L(A) ¥= 0. This can be

proved by standard compactness arguments and a diagonal process. Note also that

if a G L(A), then the subtriangle {a¡tt//}fc</ can be chosen so that the convergence

in (1.5) is arbitrarily fast.

2. The main lemma. The following lemma is our main tool.

Lemma 2.1. Let E be any symmetric sequence space, and let S: TE^> CE be a

nonzero bounded operator. Let xtJ = SefJ, a¡j = x¡j(i,j), 1 < i < j < oo, and let

a G L({a,- •},-<•). Then for every 0 <e < 1 there exist increasing sequences of

positive integers {/n„}"=1 and {«„}*_!, satisfying »!„<«„< mr+xfor every v, so that

if Q= 0({»U, {",}) « defined by (1.1) and if we define U = (QS - aI)TQ:
CE-*CE, then \\U\\ < e.

Proof. By passing to a subtriangle if necessary, we may assume that for some

numbers {a¡}f=x, we have

\cttj - a,| < e • g-'-',        \a¡ - a\ < e • g"'. (2.1)

Now, for each fixed i, {eiJ}'*Li is isometrically equivalent to the unit vector basis of

l2, so x¡j = Se¡j -» 0 weakly as/ —» oo. By standard perturbation arguments we can

assume that for some increasing sequences of positive integers {t*}"^, {/*}"_!

and {¿}?_, with

rk <'k <Jk < Tk+i>       k = l,2, ..., (2.2)

we have for every k < I,

x, j(i,j) ■» 0   if either max{/,y'} < r, ormax{i,/} > t/+1. (2.3)
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For every n, k, I with k < / we define

X(n, k, I) = xJiiJ,). (2.4)

Note that X(k, k, I) = o,^, and that in general \X(n, k, l)\ < ||j^J| < ||S||.

We construct now an increasing sequence {/„}"_! of positive integers and

numbers X(n, k) so that for every n,k<v,

\X(n, k, /„) - X(n, k)\<e- 8-"-*-'. (2.5)

Indeed, every subsequence of {X(n, k, l)}T-max(n,k) nas a further convergent

subsequence. Let {l^X)}T~i De an increasing sequence, and let X(l, 1) be such that

|a(1, 1, (W) - X(l, 1)1 < e- 8"2-' for every I. If {/,<m>}r_m and {X(n, k)}^^^

have been defined, let {X(n, k)}nua^nk^_m+x be numbers so that for some subse-

quence {l^+x)}T.m+i of {//m)}r_m+1 we have

|X(n, k, lfm+X)) - X(n, k)\<e- 8"--*-' (2.6)

for every / and every n, k with max{«, k} = m + 1. By defining /„ = l^\ we

clearly get that (2.5) holds for every n, k < v.

Note that by (2.1),

X(k, k) = a^   for every A:. (2.7)

Let n0 and k be given and let v = max{/io, k}. Then by (2.5),

| 2 \X(n, *)|2)      < | 2 IM«. *. 0\2)     + e < 11*^11 + e < ||S|| + e.

(2.8)

It follows that for some increasing sequence {k)l}™_x of positive integers and for

some subsequence of {/„}"_i which we continue to denote by {/„}"_] for conveni-

ence, we have k^ < ¡^ < A^+, for every p, and

IM**» *JI <e ■ s-'1"'  for every ' < M- (2-9)

We now claim that

M*/»» O ~* 0   as o -» oo, for every ¿t. (2.10)

Indeed, if (2.10) is false for some p, then for some a ¥= 0 and some increasing

sequence {o,}fix, we have |A(fcM, & ) — a| < 2-' for every t. Let Af be such that

\\S\\(N + 1)I/2 < (N + l)\a\ - 1 - e, and choose v so that p > maxf^, k„w}.

Then, by (2.5),

l|S||(JV+l) 1/2
IN

Í-JV

2JV

2N

2    A(^,fcv/r)
<-/V

2 MV*0
( = Af

2//

2   e-8-"-
t-N

2N

> (N + l)\a\ -  2   2"' - e > (N + l)|a| - 1 - e.      (2.11)
r-Af

This contradicts the choice of N and thus proves (2.10).



604 JONATHAN ARAZY

By passing to further subsequences of {kllt}™-x and {/,}"_! if necessary, we may

assume that

and that

Let for p, v = 1, 2,

and let

|A(*/,,*>)|<e-g-"-',       p*v,

K < ¡p <kl¡+x,       u= 1,2,-

m„ = zt     ,       W- — /;
(1 *2»-l' » •/'J|

ß = ß(K}, {«,})

(2.12)

(2.13)

(2.14)

(2.15)

be the projection defined by (1.1). Note that by (2.2), (2.3), (2.13), (2.14) and (2.15),

we have

Define

Qx^n, eTE>       M < "•

U = (QS = aI)TQ,

(2.16)

(2.17)

where T is the triangular projection (1.2).

Let 2S.it/iVi be a normalized element of CE, so that t¡j ¥= 0 only for finitely

many pairs (/,/). Then using (in this order) (2.13), (2.14), (2.16), the fact that for

fixed i, {e,,}jli are isometrically equivalent to the unit vector basis of

l2, (2.5), (2.1) and (2.12), we get

"2   hj*j 2 '^(ô*^ - «vJ
¡1<V

2    ̂ (M^-l. *2M-1> ¡2,) - «)<?,
Ii<v

^.n.

"W+      Zj    ^.n, 2j    A(*2<t-1> *2»»-l> hr)ei
H<v a-l

i(2l^,J2-IM^-.>*2,-.>/J-«l2)
|i-1\f-1 /

1/2

2 (    2    l^,J2-IM^-..^-..OI2)
i,o-l \ »-max{fi,<7} /

1/2

H^a

< 2t 2   8-' + 2e  2    8-"-° <2ef^-t-¿) <e.      (2.18)
M-i mo-i V'      4V'

So, || U\\ < e and the Lemma is proved.   □
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Corollary 2.2. Let E, S: TE -* CE and atJ = (Se¡j)(i,j), 1 < i < j < oo, be as

in the statement of Lemma 2.1, and assume that 0 ^a G L({a¡j}^j). Then there

exists a subtriangle {7Mj„}u<i, of {5e,v},<y which is 2\\S\\ \a\~x-equivalent to

{<>,..},,<,• 7/> moreover, S(TE) c TE, then {y^}^, can be chosen so that [^J(1<, is

2\\S\\ \a\~x-complemented in TE.

Proof. Let 0 < e < min{|a|, ||S||}/20. By Lemma 2.1, choose increasing se-

quences {m^} and {«„} of positive integers with /n, < nv < my+x for every v, and so

that if we define Q = g({/w,}, {«„}) and t/ = (QS - aI)TQ, then \\U\\ < e. Let

JW» = ^Vv M < "• Then f°r eVeiy * = 2»<»'m»e«VA e C" WC haVC

= \\Sx\\ > \\QSx\\ >|a|-||x||-||ßSx-ax||

> (|«| - ||l/||)||x|| > (|a| - e)||x|| > \a\ • ||x||/2.       (2.19)

Since HS^/^J = ||Sx|| < ||5|| • ||x||, we get that {y^}^, is 2||S|| lar1-
equivalent to {e_ A}M<r. This proves the first assertion since {«_,^}/l<, is isometri-

cally equivalent to {e^,}^.

Now assume that STE c F£. Let y = [.y   ] <r = SQTE, and define

P0 - «-'(Sß - í/)|r„ (2.20)

K=/-f-a-'t7. (2.21)

Clearly, F0 is a projection in TE and ||F0|| < 21||5||/20|o|. Also, || V - I\\ < |a|_1e

< 1/20, and so V is an automorphism of TE. It follows that

P=VP0V~X (2.22)

is a projection in TE, \\P\\ < || F|| • ||F0|| • || V~x\\ < 2\\S\\ \a\~\ and since VP0 =

a~xSQ\T¡¡, the range of P is exactly Y.   fj

3. Proof of Theorem A. We are now ready to prove Theorem A stated in the

abstract. We actually prove a somewhat stronger result, namely:

Theorem 3.1. Let E be a symmetric sequence space, let X be either CE or TE and

let P be any bounded projection in X. Then either PX or (I — P)X contains a

subspace which is isomorphic to X and complemented in X.

Proof of Theorem 3.1 for X = TE. Let us denote for 1 < i < j < oo, a¡j =

Peu> bu - (7 - p)eu> «v = auOJ) *nd ßtj = ¡>¡j(i,j). Since au + btJ = eid for

every i < j, we have a,- • + /?,- • = 1, and thus either \a¡ \ > 1/2 or | /},J > 1/2 (or

both). By Ramsey's theorem (see [4]) there exists an increasing sequence of positive

integers {ik}^x so that either

I^J > 1/2   for every k < I, (3.1)

or

| ßtJ > 1/2   for every k < I. (3.2)

Without loss of generality we assume that (3.1) holds (since, otherwise (3.2)

holds, and the proof is the same provided we replace Phy I — P and a¡j by b¡J).
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Choose any a G L({a¡k¡i}k<l), and note that (3.1) implies that |a| > 1/2. Using

Lemma 2.1 and Corollary 2.2 with S = P, we get a subtriangle {y^,}^, of

K*}*</ which is 4||7>||-equivalent to {e^}^,, and so that [y^]^, = Y is

4||7>||-complemented in TE. Since Y c PTE, this completes the proof in this case.

Proof of Theorem 3.1 for X = CE. By the case X = TE treated above, it is

enough to consider here only the spaces CE so that CE 96 TE. That is, by

Proposition 1.1, the spaces CE, so that

VX = XT+ I - T   is bounded in CE only for X = 1. (3.3)

Let us denote, for every 1 < i,j < 00, atJ = Pe¡j, btJ = (I — P)etJ, a¡, =

a¡j(i,j) and ßtJ = b¡j(i,j). Using Ramsey's theorem once again, we get an increas-

ing sequence {i*}"_i so that either

ler^J > 1/2   for every l< k, (3.4)

or

\ßM\> 1/2   for every l< k. (3.5)

Again, we assume without loss of generality that (3.4) holds. By passing to a

subsequence of {ik}k°=x if necessary we may assume also that for some a with

1/2 < |cr| < HT»|| we have L({o,t /;}/<Jt) = {a}. Choose some y E L({aik¿}k<l) and

let

0<e<||7>||/20(||7>|| + l). (3.6)

Applying Lemma 2.1 to Sx = P\T¡¡ and TE we construct subsequences {n^X))^x and

{»V(1)}r-i of {'*}"-1 so mat "*r(1) < "r0) < «i+i for every y and so that if g, =

Q({m?}, {«<'>}), then

||(ß,5, - 77)7-2,11 < e. (3.7)

Clearly, 7.({a^i)^i)}r<(1) = {a}. Now TE is isometric in a natural way to TE =

\*tj\i<t so by applying Lemma 2.1 to S = 7*1^ and to fE and I — T instead of TE

and 7" respectively, we get subsequences {nF}"_, and [mp}f_x of {tí0}".! and

{mil))7-\ respectively, with m, < n, < mr+x for every v, so that if Ö =

ß({»U> {«,})> then

||(ßS-o/)(/-r)ß||<e. (3.8)

Since the family {Q, Qx, T) is commutative, it is clear that (3.7) holds also with Q

instead of Qx. Let

rV = V(y/a) ■ Q = (yT/a + I - T)Q. (3.9)

Then for every x G CE with only finitely many nonzero coordinates,

\\{a~xQPQ - W)x\\ < ||(ß5, - Y/)rß*||/|a| + ||(ßS - cJ)(I - r)ß*||/|a|

< 2e||x||/|a|. (3.10)

In particular this implies that W is bounded in CE. Let J be the isometry of CE

onto QCE defined by Je^r = e^^, then J ~lWJ = K(y/a). By the assumption (3.3)

we get that a = y and thus W = Q.
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Let U = a~ lPJ. Then for every x E CE,

\\Ux\\ > \\QUx\\ > \\Jx\\ - \\axQPQJx - QJx\\ > (l - 2e|a|-,)||x|| > |||x||.

(3.11)

It follows that U is an isomorphism (with constant < 20||F||/9) from CE onto

some subspace Z of PCE. Let

R0 = axPQ + Q - axQPQ, (3.12)

F=/+ a~xQPQ- Q. (3.13)

Then R0 is a bounded projection in CE, and by (3.10), || V — I\\ < 1/5. So, V is an

automorphism of CE and R = VR0V~X is a projection in CE with ||F|| < 4||F||.

Since VR0 = a ~ XPQ, the range of R is Z. This completes the proof of Theorem 3.1.

D

4. Applications. Recall that a Banach space X is primary if for every bounded

projection P on X, either PX « X or (/ - F)X « Ar. For 1 < /» < oo, let Cp = C^,

and let C„ = C„o. It is known that for 1 <p < oo, Cp is primary (see [1]). We

strengthen this somewhat as follows.

Corollary 4.1. Let CE be a unitary matrix space so that for some 1 < p < oo,

CE « (CE © CE © ■ ■ ■ ®CE © • • • )lp (4.1)

(where if p = oo, the direct sum is taken in the sense of c0). Then CE is primary. In

particular, the spaces Cp, 1 < p < oo, are primary.

The corollary follows easily from Theorem 3.1, the decomposition method (see

[6, p. 54]) and the fact (see [1]) that for every 1 < p < oo,

C,«(C,©C,©-- ■ 0C,©- • • )v

These arguments show that Corollary 4.1 holds also for TE instead of CE.

Problem 4.2. /* every unitary matrix space a primary Banach spacel

Let us pass to a local (i.e. finite dimensional) version of Theorem 3.1. If F is a

symmetric sequence space, then CE denotes the space of all n X n matrices with

the norm induced from CE. Let {An}™_x be pairwise disjoint subsets of the positive

integers so that An has exactly n elements, and let

SE = j x G CE, x(i,j) = 0 if (i,j) E U  K X An j. (4.2)

SE can be considered in the obvious way as the direct sum SE = (2"_i 0 CE)E.

The importance of SE stems from the easily proved fact that CE is finitely

represented in SE.

Using the same ideas as in the proofs of Lemma 2.1 and Theorem 3.1, we are

able to prove the following results.
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Corollary 4.2. Let k be a positive integer and let I < M < oo. Then there exists

a positive integer n = n(k, M) so that if E is any symmetric sequence space and if P

is any projection in CE with \\P\\ < M, then either PCE or (7 - P)CE contains a

subspace which is 4(A7 + l)-isomorphic to CE and 4(A7 + l)-complemented in CE.

Corollary 4.3. Let E be any symmetric sequence space and let P be a bounded

projection in SE. Then either PSE or (I — P)SE contains a subspace which is

isomorphic to SE and complemented in SE.

Corollary 4.4. For 1 < p < oo, the space SP = (2"-i © C/), is primary.

Here, as before, if p = oo the direct sum is taken in the sense of c0.

In proving Corollary 4.2 we use Ramsey's theorem for finite sets many times.

The estimate on the growth of « as a function of k we obtain is therefore very bad.

In proving Corollary 4.3, we also use the fact (easily proved by the decomposition

method) that if {nk)k°_x is any sequence of positive integers so that s\xpknk = oo,

then SE^Ç2t-i ®C^)E.

Problem 4.5. Let E be a symmetric sequence space. Is SE a primary Banach spacel
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