The equality of unilateral derivates
HTML articles powered by AMS MathViewer
- by M. J. Evans and P. D. Humke
- Proc. Amer. Math. Soc. 79 (1980), 609-613
- DOI: https://doi.org/10.1090/S0002-9939-1980-0572313-1
- PDF | Request permission
Abstract:
C. J. Neugebauer has shown that if f is a continuous function of bounded variation defined on the real line, then the set E where the upper right derivate differs from the upper left derivate is of measure zero and first category. Here it is shown that this result is best possible; that is, given any measure zero first category set K, there is a continuous function of bounded variation for which $K \subseteq E$. It is also shown that if f is monotone, then E is $\sigma$-porous. This result can be used to provide an elementary proof of the fact that for an arbitrary function f the left and right essential cluster sets are identical except at a $\sigma$-porous set of points, a result first proved by L. Zajíček.References
- C. L. Belna, M. J. Evans, and P. D. Humke, Symmetric and ordinary differentiation, Proc. Amer. Math. Soc. 72 (1978), no. 2, 261–267. MR 507319, DOI 10.1090/S0002-9939-1978-0507319-2 E. P. Dolženko, Boundary properties of arbitrary functions, Math. USSR-Izv. 1 (1967), 1-12.
- Marie Kulbacka, Sur l’ensemble des points de l’asymétrie approximative, Acta Sci. Math. (Szeged) 21 (1960), 90–95 (French). MR 117307
- Ladislav Mišík, Über approximative derivierte Zahlen monotoner Funktionen, Czechoslovak Math. J. 26(101) (1976), no. 4, 579–583. MR 432834
- C. J. Neugebauer, A theorem on derivates, Acta Sci. Math. (Szeged) 23 (1962), 79–81. MR 140624
- L. Zajíček, On cluster sets of arbitrary functions, Fund. Math. 83 (1973/74), no. 3, 197–217. MR 338294, DOI 10.4064/fm-83-3-197-217
- Luděk Zajíček, Sets of $\sigma$-porosity and sets of $\sigma$-porosity $(q)$, Časopis Pěst. Mat. 101 (1976), no. 4, 350–359 (English, with Russian summary). MR 0457731
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 79 (1980), 609-613
- MSC: Primary 26A24; Secondary 26A45
- DOI: https://doi.org/10.1090/S0002-9939-1980-0572313-1
- MathSciNet review: 572313