The existence of $Q$-sets is equivalent to the existence of strong $Q$-sets
HTML articles powered by AMS MathViewer
- by Teodor C. Przymusiński
- Proc. Amer. Math. Soc. 79 (1980), 626-628
- DOI: https://doi.org/10.1090/S0002-9939-1980-0572316-7
- PDF | Request permission
Abstract:
In this note we prove that the existence of an uncountable Q-set is equivalent to the existence of an uncountable strong Q-set, i.e. a Q-set all finite powers of which are Q-sets.References
- R. H. Bing, W. W. Bledsoe, and R. D. Mauldin, Sets generated by rectangles, Pacific J. Math. 51 (1974), 27–36. MR 357124, DOI 10.2140/pjm.1974.51.27
- W. G. Fleissner, Current research on $Q$ sets, Topology, Vol. I, II (Proc. Fourth Colloq., Budapest, 1978) Colloq. Math. Soc. János Bolyai, vol. 23, North-Holland, Amsterdam-New York, 1980, pp. 413–431. MR 588793 —, Squares of Q-sets (to appear). T. C. Przymusiński, On the equivalence of certain set theoretic and topological conditions, Proc. Bolyai Janos Colloq. on Topology (Budapest, 1978) (to appear).
- T. Przymusiński and F. D. Tall, The undecidability of the existence of a non-separable normal Moore space satisfying the countable chain condition, Fund. Math. 85 (1974), 291–297. MR 367934, DOI 10.4064/fm-85-3-291-297
- Mary Ellen Rudin, Pixley-Roy and the Souslin line, Proc. Amer. Math. Soc. 74 (1979), no. 1, 128–134. MR 521886, DOI 10.1090/S0002-9939-1979-0521886-5
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 79 (1980), 626-628
- MSC: Primary 54E35
- DOI: https://doi.org/10.1090/S0002-9939-1980-0572316-7
- MathSciNet review: 572316