THE EXISTENCE OF Q-SETS IS EQUIVALENT TO THE EXISTENCE OF STRONG Q-SETS

TEODOR C. PRZYMUSIŃSKI

ABSTRACT. In this note we prove that the existence of an uncountable Q-set is equivalent to the existence of an uncountable strong Q-set, i.e. a Q-set all finite powers of which are Q-sets.

A Q-set is a separable metric space all subsets of which are F_{σ} sets. It is well known that the existence of an uncountable Q-set is equivalent to the existence of a normal separable nonmetrizable Moore space and is undecidable in ZFC (for more information on Q-sets see the survey paper [F1]).

A strong Q-set is a Q-set all finite powers of which are Q-sets. It is known that the Pixley-Roy hyperspace of a metric separable space M is a normal nonmetrizable Moore space if and only if M is an uncountable strong Q-set [PT], [R].

W. G. Fleissner proved that the square of a Q-set in general does not have to be a Q-set [F2]. We prove that the existence of an uncountable Q-set is equivalent to the existence of an uncountable strong Q-set. We also formulate some other statements equivalent to the existence of uncountable Q-sets.

LEMMA 1. If $\{\sigma_n\}_{n=1}^{\infty}$ is a sequence of separable metrics σ_n on X then there exists a separable metric σ on X which is stronger than any of the metrics σ_n .

PROOF. Consider the diagonal of $\prod_{n=1}^{\infty} (X, \sigma_n)$.

LEMMA 2 (cf. [BBM, THEOREM 3]). Let A be a subset of $X \times Y$ and ρ a separable metric on X. All horizontal sections of A (i.e. sets $A_y = \{x \in X: (x,y) \in A\}$ for $y \in Y$) are F_{σ} subsets of (X, ρ) if and only if there exists a separable metric σ on Y such that A is an F_{σ} subset of $(X, \rho) \times (Y, \sigma)$.

PROOF. The "if" implication is obvious. Suppose that all horizontal sections A_y of A are F_{σ} subsets of (X, ρ) . For every $y \in Y$ let $X \setminus A_y = \bigcap_{n=1}^{\infty} G_{y,n}$, where sets $G_{y,n}$ are open in (X, ρ) and let $\{B_m\}_{m=1}^{\infty}$ be a base for (X, ρ) . Put $C_{n,m} = \{y \in Y: B_m \subset G_{y,n}\}$.

One easily verifies that

$$(X \times Y) \setminus A = \bigcap_{n=1}^{\infty} \bigcup_{m=1}^{\infty} (B_m \times C_{n,m}).$$

It suffices to find a separable metric σ on Y in which all sets $C_{n,m}$ are open (cf. Lemma 1). \square

Presented to the Society, August 7, 1978; received by the editors March 26, 1979.

AMS (MOS) subject classifications (1970). Primary 02K05, 54E30; Secondary 02K30, 54E35.

¹This answers a question brought to my attention by F. D. Tall.

Let us denote by R the real line or any other set of cardinality continuum. As usual $\omega_1 = {\alpha: \alpha < \omega_1}$.

THEOREM. The following conditions are equivalent:

- (i) there exists an uncountable Q-set;
- (ii) there exists an uncountable strong Q-set;
- (iii) $2^{\omega_1} = 2^{\omega}$ and for every subset A of $R \times \omega_1$ there exist separable metrics ρ on R and σ on ω_1 such that A is an F_{σ} subset of $(R, \rho) \times (\omega_1, \sigma)$;
- (iv) $2^{\omega_1} = 2^{\omega}$ and for every family \mathfrak{A} of ω_1 subsets of R there exists a separable metric ρ on R such that all members of \mathfrak{A} are F_{σ} subsets of (R, ρ) ;
- (v) $2^{\omega_1} = 2^{\omega}$ and for every $n < \omega$ and every subset A of $R \times \omega_1^n$ there exist separable metrics ρ on R and σ on ω_1 such that A is an F_{σ} subset of $(R, \rho) \times (\omega_1, \sigma)^n$;
- (vi) $2^{\omega_1} = 2^{\omega}$ and for every $n < \omega$ and every family \mathfrak{C} of ω_1 subsets of $R \times \omega_1^n$ there exist separable metrics ρ on R and σ on ω_1 such that all members of \mathfrak{C} are F_{σ} subsets of $(R, \rho) \times (\omega_1, \sigma)^n$.
- REMARK 1. W. G. Fleissner proved that there exist models of set theory in which there exist Q-sets of cardinality ω_2 , but in which there are no strong Q-sets of cardinality ω_2 [F2]. This implies that conditions (i) and (ii) in the above theorem are no longer equivalent if one assumes that the considered Q-sets are of cardinality ω_2 . Similarly, conditions (iii) and (v) and conditions (iv) and (vi) are not equivalent if one replaces ω_1 by ω_2 . \square
- REMARK 2. Conditions (i)—(vi) above are also equivalent to the following propositions (for more information, see [P]):
- (vii) R^{ω_1} is a continuous image of a separable first countable space (here R carries its usual topology);
- (viii) every space of cardinality (or weight) ω_1 can be embedded into a sequentially separable space. \square

PROOF OF THE THEOREM. (i) \rightarrow (iii). Let σ be a separable metric on ω_1 such that (ω_1, σ) is a Q-set. From Lemma 2 it follows that there exists a separable metric ρ on R such that A is an F_{σ} subset of $(R, \rho) \times (\omega_1, \sigma)$.

- (iii) \rightarrow (iv). Let $\mathscr{C} = \{A_{\alpha} : \alpha < \omega_1\}$. It suffices to put $A = \bigcup \{A_{\alpha} \times \{\alpha\} : \alpha < \omega_1\} \subset R \times \omega_1$ and apply (iii).
- (iv) \rightarrow (v). For the sake of simplicity, we shall prove (v) only in the case of n = 2. The general case can be similarly proved by induction.

Let A be a subset of $R \times \omega_1 \times \omega_1$ and put $B = \{(r, \alpha, \beta) \in A : \alpha \leq \beta\}$ and $C = \{(r, \alpha, \beta) \in A : \alpha \geq \beta\}$. From the symmetry of assumptions and the equality $A = B \cup C$ we infer that without loss of generality we can assume that A = B. For every $\beta \in \omega_1$ put $A_{\beta} = \{(r, \alpha) \in R \times \omega_1 : (r, \alpha, \beta) \in A\}$. From Lemma 2 it follows that it suffices to show that there exist separable metrics ρ on R and σ on ω_1 such that all sets A_{β} are F_{σ} subsets of $(R, \rho) \times (\omega_1, \sigma)$ for $\beta \in \omega_1$. Since $A_{\beta} \subset R \times (\beta + 1)$, for every $\beta < \omega_1$, it suffices to show that there exists a separable metric ρ on R such that all sets $A_{\beta\alpha} = \{r \in R : (r, \alpha) \in A_{\beta}\}$ are F_{σ} subsets of (R, ρ) for $\beta < \omega_1$ and $\alpha \leq \beta$, but this is a consequence of (iv).

 $(v) \to (vi)$. Let $\mathscr{C} = \{A_{\alpha} : \alpha < \omega_1\}$. It suffices to put $A = \bigcup \{A_{\alpha} \times \{\alpha\} : \alpha < \omega_1\}$ $\subset R \times \omega_1^{n+1}$ and apply (v).

(vi) \rightarrow (ii). It is enough to prove that for every $n < \omega$ there exists a separable metric σ_n on ω_1 such that $(\omega_1, \sigma_n)^n$ is a Q-set, because then, by Lemma 1, there would exist a σ which is stronger than any of the metrics σ_n and clearly (ω_1, σ) is a strong Q-set.

Let $n < \omega$ and let $\{A_r: r \in R\}$ be the family of all subsets of ω_1^n . Put $A = \bigcup \{\{r\} \times A_r: r \in R\} \subset R \times \omega_1^n$. By (vi) there exist separable metrics ρ on R and σ on ω_1 such that A is an F_{σ} subset of $(R, \rho) \times (\omega_1, \sigma)^n$. Clearly, $(\omega_1, \sigma)^n$ is a Q-set.

REMARK 3. R. Pol suggested a different proof of the equivalence of (i) and (ii) based on the fact that ω_1^2 is a union of countably many graphs and inverse graphs.

REFERENCES

- [BBM] R. H. Bing, W. W. Bledsoe and R. D. Mauldin, Sets generated by rectangles, Pacific J. Math. 51 (1974), 27-36.
- [F1] W. G. Fleissner, Current research on Q-sets, Proc. Bolyai Janos Colloq. on Topology (Budapest, 1978) (to appear).
 - [F2] _____, Squares of Q-sets (to appear).
- [P] T. C. Przymusiński, On the equivalence of certain set theoretic and topological conditions, Proc. Bolyai Janos Colloq. on Topology (Budapest, 1978) (to appear).
- [PT] T. C. Przymusiński and F. D. Tall, The undecidability of the existence of a nonseparable normal Moore space satisfying the countable chain condition, Fund. Math. 85 (1974), 291-297.
 - [R] M. E. Rudin, Pixley-Roy and the Souslin line, Proc. Amer. Math. Soc. 79 (1979), 128-134.

INSTYTUT MATEMATYCZNY, PAN, WARSAW 00-950, ŚNIADECKICH 8, POLAND