THE EXISTENCE OF Q-SETS IS EQUIVALENT TO THE EXISTENCE OF STRONG Q-SETS

TEODOR C. PRZYMUSIŃSKI

Abstract. In this note we prove that the existence of an uncountable Q-set is equivalent to the existence of an uncountable strong Q-set, i.e. a Q-set all finite powers of which are Q-sets.

A Q-set is a separable metric space all subsets of which are Fσ sets. It is well known that the existence of an uncountable Q-set is equivalent to the existence of a normal separable nonmetrizable Moore space and is undecidable in ZFC (for more information on Q-sets see the survey paper [F1]).

A strong Q-set is a Q-set all finite powers of which are Q-sets. It is known that the Pixley-Roy hyperspace of a metric separable space M is a normal nonmetrizable Moore space if and only if M is an uncountable strong Q-set [PT], [R].

W. G. Fleissner proved that the square of a Q-set in general does not have to be a Q-set [F2]. We prove that the existence of an uncountable Q-set is equivalent to the existence of an uncountable strong Q-set. We also formulate some other statements equivalent to the existence of uncountable Q-sets.

Lemma 1. If \(\{ \sigma_n \}_{n=1}^{\infty} \) is a sequence of separable metrics \(\sigma_n \) on \(X \) then there exists a separable metric \(\sigma \) on \(X \) which is stronger than any of the metrics \(\sigma_n \).

Proof. Consider the diagonal of \(\prod_{n=1}^{\infty} (X, \sigma_n) \).

Lemma 2 (cf. [BBM, Theorem 3]). Let \(A \) be a subset of \(X \times Y \) and \(\rho \) a separable metric on \(X \). All horizontal sections of \(A \) (i.e. sets \(A_y = \{ x \in X : (x, y) \in A \} \) for \(y \in Y \)) are \(F_\sigma \) subsets of \((X, \rho) \) if and only if there exists a separable metric \(\sigma \) on \(Y \) such that \(A \) is an \(F_\sigma \) subset of \((X, \rho) \times (Y, \sigma) \).

Proof. The "if" implication is obvious. Suppose that all horizontal sections \(A_y \) of \(A \) are \(F_\sigma \) subsets of \((X, \rho) \). For every \(y \in Y \) let \(X \setminus A_y = \bigcap_{n=1}^{\infty} G_{y,n} \), where sets \(G_{y,n} \) are open in \((X, \rho) \) and let \(\{ B_m \}_{m=1}^{\infty} \) be a base for \((X, \rho) \). Put \(C_{n,m} = \{ y \in Y : B_m \subseteq G_{y,n} \} \).

One easily verifies that

\[
(X \times Y) \setminus A = \bigcap_{n=1}^{\infty} \bigcup_{m=1}^{\infty} (B_m \times C_{n,m}).
\]

It suffices to find a separable metric \(\sigma \) on \(Y \) in which all sets \(C_{n,m} \) are open (cf. Lemma 1).

Presented to the Society, August 7, 1978; received by the editors March 26, 1979.

AMS (MOS) subject classifications (1970). Primary 02K05, 54E30; Secondary 02K30, 54E35.

1This answers a question brought to my attention by F. D. Tall.

© 1980 American Mathematical Society

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Let us denote by T the real line or any other set of cardinality continuum. As usual $\omega_1 = \{\alpha: \alpha < \omega_1\}$.

Theorem. The following conditions are equivalent:

(i) there exists an uncountable Q-set;

(ii) there exists an uncountable strong Q-set;

(iii) $2^{\omega_1} = 2^\omega$ and for every subset A of $R \times \omega_1$ there exist separable metrics ρ on R and σ on ω_1 such that A is an F_σ subset of $(R, \rho) \times (\omega_1, \sigma)$;

(iv) $2^{\omega_1} = 2^\omega$ and for every family \mathcal{Q} of ω_1 subsets of R there exists a separable metric ρ on R such that all members of \mathcal{Q} are F_σ subsets of (R, ρ);

(v) $2^{\omega_1} = 2^\omega$ and for every $n < \omega$ and every subset A of $R \times \omega_1^n$ there exist separable metrics ρ on R and σ on ω_1 such that A is an F_σ subset of $(R, \rho) \times (\omega_1, \sigma)^n$;

(vi) $2^{\omega_1} = 2^\omega$ and for every $n < \omega$ and every family \mathcal{Q} of ω_1 subsets of $R \times \omega_1^n$ there exist separable metrics ρ on R and σ on ω_1 such that all members of \mathcal{Q} are F_σ subsets of $(R, \rho) \times (\omega_1, \sigma)^n$.

Remark 1. W. G. Fleissner proved that there exist models of set theory in which there exist Q-sets of cardinality ω_2, but in which there are no strong Q-sets of cardinality ω_2 [F2]. This implies that conditions (i) and (ii) in the above theorem are no longer equivalent if one assumes that the considered Q-sets are of cardinality ω_2. Similarly, conditions (iii) and (v) and conditions (iv) and (vi) are not equivalent if one replaces ω_1 by ω_2. □

Remark 2. Conditions (i)–(vi) above are also equivalent to the following propositions (for more information, see [P]):

(vii) R^{ω_1} is a continuous image of a separable first countable space (here R carries its usual topology);

(viii) every space of cardinality (or weight) ω_1 can be embedded into a sequentially separable space. □

Proof of the Theorem. (i) \rightarrow (iii). Let σ be a separable metric on ω_1 such that (ω_1, σ) is a Q-set. From Lemma 2 it follows that there exists a separable metric ρ on R such that A is an F_σ subset of $(R, \rho) \times (\omega_1, \sigma)$.

(iii) \rightarrow (iv). Let $\mathcal{Q} = \{A_\alpha: \alpha < \omega_1\}$. It suffices to put $A = \bigcup \{A_\alpha \times \{\alpha\}: \alpha < \omega_1\} \subset R \times \omega_1$ and apply (iii).

(iv) \rightarrow (v). For the sake of simplicity, we shall prove (v) only in the case of $n = 2$. The general case can be similarly proved by induction.

Let A be a subset of $R \times \omega_1 \times \omega_1$ and put $B = \{(r, \alpha, \beta) \in A: \alpha < \beta\}$ and $C = \{(r, \alpha, \beta) \in A: \alpha > \beta\}$. From the symmetry of assumptions and the equality $A = B \cup C$ we infer that without loss of generality we can assume that $A = B$. For every $\beta \in \omega_1$ put $A_\beta = \{(r, \alpha) \in R \times \omega_1: (r, \alpha, \beta) \in A\}$. From Lemma 2 it follows that it suffices to show that there exist separable metrics ρ on R and σ on ω_1 such that all sets A_β are F_σ subsets of $(R, \rho) \times (\omega_1, \sigma)$ for $\beta \in \omega_1$. Since $A_\beta \subset R \times (\beta + 1)$, for every $\beta < \omega_1$, it suffices to show that there exists a separable metric ρ on R such that all sets $A_{\beta\alpha} = \{r \in R: (r, \alpha) \in A_\beta\}$ are F_σ subsets of (R, ρ) for $\beta < \omega_1$ and $\alpha < \beta$, but this is a consequence of (iv).

(v) \rightarrow (vi). Let $\mathcal{Q} = \{A_\alpha: \alpha < \omega_1\}$. It suffices to put $A = \bigcup \{A_\alpha \times \{\alpha\}: \alpha < \omega_1\}$ and apply (v).
(vi) → (ii). It is enough to prove that for every $n < \omega$ there exists a separable metric σ_n on ω_1 such that $(\omega_1, \sigma_n)^n$ is a Q-set, because then, by Lemma 1, there would exist a σ which is stronger than any of the metrics σ_n and clearly (ω_1, σ) is a strong Q-set.

Let $n < \omega$ and let $\{ A_r : r \in R \}$ be the family of all subsets of ω_1^n. Put $A = \bigcup \{ \{ r \} \times A_r : r \in R \} \subset R \times \omega_1^n$. By (vi) there exist separable metrics ρ on R and σ on ω_1 such that A is an F_σ subset of $(R, \rho) \times (\omega_1, \sigma)^n$. Clearly, $(\omega_1, \sigma)^n$ is a Q-set.

\square

Remark 3. R. Pol suggested a different proof of the equivalence of (i) and (ii) based on the fact that ω_1^2 is a union of countably many graphs and inverse graphs.

\square

REFERENCES

