Relations among characteristic classes of $n$-manifolds imbedded in $\textbf {R}^{n+k}$
HTML articles powered by AMS MathViewer
- by Stavros Papastavridis
- Proc. Amer. Math. Soc. 79 (1980), 639-643
- DOI: https://doi.org/10.1090/S0002-9939-1980-0572319-2
- PDF | Request permission
Abstract:
Let ${I_n} \subseteq {H^ \ast }(BO;{Z_2})$ be the (graded) set of those normal characteristic classes which are zero on all compact, closed ${C^\infty }$ manifolds. Let ${I_{n,k}} \subseteq {H^ \ast }(BO;{Z_2})$ be the set of those characteristic classes which are zero on all n-manifolds which imbed in ${R^{n + k}}$. Let K be the (graded) ideal in ${H^ \ast }(BO;{Z_2})$ generated by the Stiefel-Whitney classes ${w_k},{w_{k + 1}},{w_{k + 2}},{w_{k + 3}}, \ldots$. We will prove the following result: If $1 \leqslant i \leqslant \min \{ (2k - 2),(n + k - 1)/2\}$, then $I_{n,k}^i = I_n^i + {K^i}$ . Also, we will prove an analogous result for manifolds with an extra structure.References
- Edgar H. Brown Jr. and Franklin P. Peterson, Relations among characteristic classes. I, Topology 3 (1964), no. suppl, suppl. 1, 39–52. MR 163326, DOI 10.1016/0040-9383(64)90004-7
- R. Lashof, Poincaré duality and cobordism, Trans. Amer. Math. Soc. 109 (1963), 257–277. MR 156357, DOI 10.1090/S0002-9947-1963-0156357-4
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112
- René Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954), 17–86 (French). MR 61823, DOI 10.1007/BF02566923
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 79 (1980), 639-643
- MSC: Primary 57R40; Secondary 57R20
- DOI: https://doi.org/10.1090/S0002-9939-1980-0572319-2
- MathSciNet review: 572319