HAVING A SMALL WEIGHT IS DETERMINED BY THE SMALL SUBSPACES

A. HAJNAL AND I. JUHÁSZ

Abstract. We show that for every cardinal \(\kappa > \omega \) and an arbitrary topological space \(X \) if we have \(w(Y) < \kappa \) whenever \(Y \subseteq X \) and \(|Y| < \kappa \) then \(w(X) < \kappa \) as well. M. G. Tkačenko proved this for \(T_3 \) spaces in [2]. We also prove an analogous statement for the \(\pi \)-weight if \(\kappa \) is regular.

The main aim of this paper is to prove the following result.

Theorem. Let \(X \) be an arbitrary topological space and \(\kappa > \omega \) a (regular) cardinal. If \(w(Y) < \kappa \) (\(\pi(Y) < \kappa \)) holds whenever \(Y \subseteq X \) and \(|Y| < \kappa \) then \(w(X) < \kappa \) (\(\pi(X) < \kappa \)).

In [2] M. G. Tkačenko proved this (with \(w \) only) for \(T_3 \) spaces and raised the question whether \(T_3 \) could be replaced by \(T_2 \). As we see, actually no separation axiom is needed.

We start to prove our theorem by establishing a lemma which might be of some interest in itself. We shall need the following piece of notation in stating it and also later. For an arbitrary set \(\mathcal{X} \), a family \(\mathcal{S} \) of subsets of \(\mathcal{X} \) and \(Y \subseteq \mathcal{X} \) we put
\[
\mathcal{S} \upharpoonright Y = \{ S \cap Y : S \in \mathcal{S} \},
\]
the trace of \(\mathcal{S} \) on \(Y \).

Lemma. Let \(X \) be an arbitrary topological space and \(\kappa > \omega \) be a regular cardinal. Moreover let \((Y_\alpha : \alpha \in \kappa) \) be an increasing sequence of subspaces of \(X \) (i.e. \(Y_\alpha \subseteq Y_\beta \) if \(\alpha < \beta \)). If \(\mathcal{S} \) is a family of open subsets of \(X \) such that \(\mathcal{S} \upharpoonright Y_\alpha \) is a base (\(\pi \)-base) for \(Y_\alpha \) for each \(\alpha \in \kappa \), then \(\mathcal{S} \upharpoonright \bigcup \{ Y_\alpha : \alpha \in \kappa \} \) is also a base (\(\pi \)-base) for \(\bigcup \{ Y_\alpha : \alpha \in \kappa \} \) provided that \(X \) contains no left-separated subspace of cardinality \(\kappa \) (or equivalently, every subspace of \(X \) has a dense subset of cardinality less than \(\kappa \), cf. [1]).

Proof. We shall give the proof for the case of a base only, since that of the \(\pi \)-base is completely analogous. Suppose, on the contrary, that \(\mathcal{S} \upharpoonright Y \) is not a base for \(Y \). Then there is a point \(p \in Y \) and a neighbourhood \(U \) of \(p \) such that if \(p \in G \in \mathcal{S} \) then \(G \cap Y \nsubseteq G \cap U \). Now we select by transfinite induction members \(G_\alpha \in \mathcal{S} \) and points \(q_\alpha \in Y \cap G_\alpha \setminus U \) as follows. Assume \(\mu < \kappa \) and \(G_\mu \), \(q_\mu \) have already been selected for \(\nu < \mu \). Since \(\kappa \) is regular we can find an ordinal \(\alpha_\mu < \kappa \) such that \(p \in Y_{\alpha_\mu} \) and \(q_\nu \in Y_{\alpha_\mu} \) for every \(\nu < \mu \). By our assumption there is a \(G_\mu \in \mathcal{S} \) such that \(p \in G_\mu \cap Y_{\alpha_\mu} \subseteq U \). Then we can pick a point \(q_\mu \in G_\mu \cap Y \setminus U \). It is clear from our construction that if \(\nu < \mu < \kappa \) then \(q_\nu \notin G_\mu \); consequently the
sequence \(\{ q_\alpha \colon \alpha \in \kappa \} \) is left-separated, a contradiction.

Proof of the Theorem. Again we restrict ourselves to the case of the weight function \(w \), as that of \(\pi \) is done similarly. Moreover, we first assume that \(\kappa \) is regular. Our proof in this case is indirect, i.e. we assume \(w(X) > \kappa \).

Then we define by transfinite induction subspaces \(Y_\alpha \subseteq X \) and families of open sets \(\mathcal{B}_\alpha \) with \(|Y_\alpha| < \kappa \) and \(|\mathcal{B}_\alpha| < \kappa \) for \(\alpha < \kappa \) in the following way. Suppose that \(\alpha < \kappa \) and \(\mathcal{B}_\beta, \mathcal{B}_\beta \) have been defined for each \(\beta < \alpha \). If \(\alpha \) is limit (or 0) we put \(Y_\alpha = \bigcup \{ Y_\beta \colon \beta < \alpha \} \), and \(\mathcal{B}_\alpha \supseteq \bigcup \{ \mathcal{B}_\beta \colon \beta < \alpha \} \) is chosen in such a way that \(\mathcal{B}_\alpha \uparrow Y_\alpha \) is a base for \(Y_\alpha \) and \(|\mathcal{B}_\alpha| < \kappa \). This is possible because \(|Y_\alpha| < \kappa \) by the regularity of \(\kappa \). Now, if \(\alpha = \beta + 1 \), by our indirect assumption \(\mathcal{B}_\beta \) is not a base for \(X \), hence we can find a point \(p_\beta \in X \) and its neighbourhood \(U \) in such a way that no \(B \in \mathcal{B}_\beta \) satisfies \(p(\beta) \in B \subset U \). Let us put \(\mathcal{B}_\beta = \{ B \in \mathcal{B}_\beta : p(\beta) \in B \} \), then we can choose for each \(B \in \mathcal{B}_\beta \) a point \(q_\beta \in B \setminus U \). Finally, we put \(Y_\alpha = Y_\beta \cup \{ q_\beta \colon B \in \mathcal{B}_\beta \} \) and \(\mathcal{B}_\alpha \supseteq \mathcal{B}_\beta \) is chosen again so that \(\mathcal{B}_\alpha \uparrow Y_\alpha \) is a base for \(Y_\alpha \) and \(|\mathcal{B}_\alpha| < \kappa \). Let us note that then \(\mathcal{B}_\beta \uparrow Y_{\beta+1} \) is not a base for \(Y_{\beta+1} \). Having completed the induction we put

\[
Y = \bigcup \{ Y_\alpha : \alpha \in \kappa \} \quad \text{and} \quad \mathcal{B} = \bigcup \{ \mathcal{B}_\alpha : \alpha \in \kappa \}.
\]

Now, observe that \(w(Z) < \kappa \) for each \(Z \subseteq X \), \(|Z| < \kappa \) implies \(d(Z) < \kappa \) for each such \(Z \); consequently the conditions of our lemma are satisfied with the sequence of subspaces \(\langle Y_\alpha : \alpha \in \kappa \rangle \) and the open family \(\mathcal{B} \). Therefore \(\mathcal{B} \uparrow Y \) forms a base for \(Y \). But \(|Y| < \kappa \); hence by our assumption \(w(Y) < \kappa \) as well. Consequently, as is well known, we can select a subfamily \(C \subseteq \mathcal{B} \) with \(|C| = w(Y) < \kappa \) such that \(C \uparrow Y \) is already a base for \(Y \). Since \(\kappa \) is regular we must have then an \(\alpha < \kappa \) with \(C \subseteq \mathcal{B}_\alpha \). But, by our construction, \(\mathcal{B}_\alpha \uparrow Y_{\alpha+1} \) is not a base for \(Y_{\alpha+1} \) and, a fortiori, \(\mathcal{B}_\alpha \uparrow Y \) is not a base for \(Y \), a contradiction. This completes the proof for \(\kappa \) regular.

Now let us consider the case in which \(\kappa \) is singular. We claim that then there is a cardinal \(\lambda < \kappa \) such that actually \(w(Y) < \lambda \) holds whenever \(Y \subseteq X \) and \(|Y| < \kappa \). Assume, on the contrary, that no such \(\lambda \) exists. Then we can find for each cardinal \(\lambda < \kappa \) a subspace \(Y_\lambda \subseteq X \) with \(|Y_\lambda| < \kappa \) and \(w(Y_\lambda) > \lambda \). But putting \(Y = \bigcup \lambda < \kappa Y_\lambda \), we would have then \(|Y| < \kappa \) and \(w(Y) > \kappa \) (since \(\kappa \) is a limit cardinal), which is impossible.

Now take any regular \(\lambda < \kappa \) as in our claim. Then we can apply the first half of our proof to this \(\lambda \) to conclude that \(w(X) < \lambda < \kappa \).

The reader should notice that, since the \(\pi \)-weight is not monotone for subspaces, the second half of our proof (for \(\kappa \) singular) cannot be applied to it. Thus e.g. the following problem remains open.

Problem. Does there exist a topological space \(X \) such that \(\pi w(Y) < \aleph_\omega \) whenever \(Y \subseteq X \) and \(|Y| < \aleph_\omega \) but \(\pi w(X) > \aleph_\omega \)?

References

Mathematical Institute, Hungarian Academy of Sciences, 1053 Budapest V, Réátaúda U. 13–15 Hungary