A class of finite group-amalgams
HTML articles powered by AMS MathViewer
- by Dragomir Ž. Djoković
- Proc. Amer. Math. Soc. 80 (1980), 22-26
- DOI: https://doi.org/10.1090/S0002-9939-1980-0574502-9
- PDF | Request permission
Abstract:
Let ${A_{ - 1}}$ and ${A_1}$ be finite groups such that ${A_{ - 1}} \cap {A_1} = {A_0}$ is a common subgroup with $[{A_{ - 1}}:{A_0}] = 4$ and $[{A_1}:{A_0}] = 2$. We further assume that only the trivial subgroup of ${A_0}$ is normal in both ${A_{ - 1}}$ and ${A_1}$. Let K be the intersection of all conjugates $x{A_0}{x^{ - 1}}$ for $x \in {A_{ - 1}}$. Then if ${A_0} \ne \{ 1\}$ we have ${A_{ - 1}}/K \cong {D_4},{A_4}$, or ${S_4}$. We describe in detail all such amalgams $({A_{ - 1}},{A_1})$ when ${A_{ - 1}}/K \cong {D_4}$ (dihedral group of order 8). There are infinitely many of them, while if ${A_{ - 1}}/K \cong {A_4}$ or ${S_4}$ there are only finitely many amalgams.References
- Dragomir Ž. Djoković and Gary L. Miller, Regular groups of automorphisms of cubic graphs, Graph theory and related topics (Proc. Conf., Univ. Waterloo, Waterloo, Ont., 1977) Academic Press, New York-London, 1979, pp. 145–152. MR 538042
- Dragomir Ž. Djoković, Automorphisms of regular graphs and finite simple group amalgams, Algebraic methods in graph theory, Vol. I, II (Szeged, 1978) Colloq. Math. Soc. János Bolyai, vol. 25, North-Holland, Amsterdam-New York, 1981, pp. 95–118. MR 642035
- Anthony Gardiner, Doubly primitive vertex stabilisers in graphs, Math. Z. 135 (1973/74), 257–266. MR 412014, DOI 10.1007/BF01215029
- A. Gardiner, Arc transitivity in graphs. II, Quart. J. Math. Oxford Ser. (2) 25 (1974), 163–167. MR 412015, DOI 10.1093/qmath/25.1.163
- George Glauberman, Isomorphic subgroups of finite $p$-groups. I, II, Canadian J. Math. 23 (1971), 983–1022; ibid. 23 (1971), 1023–1039. MR 374262, DOI 10.4153/CJM-1971-106-0
- David M. Goldschmidt, Automorphisms of trivalent graphs, Ann. of Math. (2) 111 (1980), no. 2, 377–406. MR 569075, DOI 10.2307/1971203 J.-P. Serre, Arbres, amalgames, $S{L_2}$, Astérisque 46 (1977).
- Charles C. Sims, Graphs and finite permutation groups. II, Math. Z. 103 (1968), 276–281. MR 225865, DOI 10.1007/BF01114994
- W. T. Tutte, Connectivity in graphs, Mathematical Expositions, No. 15, University of Toronto Press, Toronto, Ont.; Oxford University Press, London, 1966. MR 0210617, DOI 10.3138/9781487584863
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 80 (1980), 22-26
- MSC: Primary 20E99
- DOI: https://doi.org/10.1090/S0002-9939-1980-0574502-9
- MathSciNet review: 574502