Essentially Hermitian operators in $B(L_{p})$
HTML articles powered by AMS MathViewer
- by G. D. Allen, D. A. Legg and J. D. Ward
- Proc. Amer. Math. Soc. 80 (1980), 71-77
- DOI: https://doi.org/10.1090/S0002-9939-1980-0574511-X
- PDF | Request permission
Abstract:
It is shown that on ${L_p}[0,1]$ all bounded linear operators which are Hermitian in the Calkin algebra $B({L_p})/C({L_p})$, must be of the form “Hermitian plus compact". That is, essentially Hermitian operators have the form, real multiplier plus compact.References
- G. D. Allen and J. D. Ward, Hermitian liftings in $B(\ell _{p})$, J. Operator Theory 1 (1979), no. 1, 27–36. MR 526288
- F. F. Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and of elements of normed algebras, London Mathematical Society Lecture Note Series, vol. 2, Cambridge University Press, London-New York, 1971. MR 0288583, DOI 10.1017/CBO9781107359895
- F. F. Bonsall and J. Duncan, Numerical ranges. II, London Mathematical Society Lecture Note Series, No. 10, Cambridge University Press, New York-London, 1973. MR 0442682, DOI 10.1017/CBO9780511662515 N. Dunford and J. T. Schwartz, Linear operators. I, Interscience, New York, 1957.
- Julien Hennefeld, The Arens products and an imbedding theorem, Pacific J. Math. 29 (1969), 551–563. MR 251547, DOI 10.2140/pjm.1969.29.551
- B. E. Johnson and S. K. Parrott, Operators commuting with a von Neumann algebra modulo the set of compact operators, J. Functional Analysis 11 (1972), 39–61. MR 0341119, DOI 10.1016/0022-1236(72)90078-x
- Shôichirô Sakai, $C^*$-algebras and $W^*$-algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 60, Springer-Verlag, New York-Heidelberg, 1971. MR 0442701
- Joseph G. Stampfli, Compact perturbations, normal eigenvalues and a problem of Salinas, J. London Math. Soc. (2) 9 (1974/75), 165–175. MR 365196, DOI 10.1112/jlms/s2-9.1.165
- J. G. Stampfli and J. P. Williams, Growth conditions and the numerical range in a Banach algebra, Tohoku Math. J. (2) 20 (1968), 417–424. MR 243352, DOI 10.2748/tmj/1178243070
- K. W. Tam, Isometries of certain function spaces, Pacific J. Math. 31 (1969), 233–246. MR 415295, DOI 10.2140/pjm.1969.31.233
Bibliographic Information
- © Copyright 1980 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 80 (1980), 71-77
- MSC: Primary 47B15
- DOI: https://doi.org/10.1090/S0002-9939-1980-0574511-X
- MathSciNet review: 574511