THE CROSSED PRODUCT OF A C*-ALGEBRA
BY AN ENDOMORPHISM

WILLIAM L. PASCHKE

Abstract. Let A be a unital, strongly amenable C*-algebra, $\sigma: A \to pAp$ a $*$-isomorphism (where p is a proper projection of A), and S an isometry such that $SxS^* = \sigma(x)$ for all x in A. If A has no nontrivial σ-invariant ideals, then $C^*(A, S)$ is simple. Furthermore, $C^*(A, S)$ is isomorphic to a corner of the crossed product of $A \otimes$ (compacts) by an automorphism.

J. Cuntz showed in [5] that the C*-algebra generated by any countable collection of isometries on Hilbert space with range projections summing to 1 is simple. An important step in his proof was the observation that this C*-algebra is generated by an AF algebra A together with a single isometry S normalizing A (in the sense that SAS^* and S^*AS are both contained in A). Actually, the simplicity of $C^*(A, S)$ does not depend very much on the special circumstances of [5], and in fact follows from fairly mild assumptions on A and S. Our theorem to this effect may be regarded as a generalization of Cuntz's result.

Theorem 1. Let A be a strongly amenable unital C*-algebra acting on a Hilbert space H. Suppose that S is a nonunitary isometry (i.e. $S^*S = 1 \neq SS^*$) in $L(H)$ such that

(i) SAS^* and S^*AS are both contained in A; and

(ii) the only proper (two-sided) ideal J of A for which $SJS^* \subseteq J$ is the zero ideal.

Then $C^*(A, S)$ is simple.

Our procedure for proving this is quite similar in outline to that followed in [5]: construct a well-behaved projection of norm one of $C^*(A, S)$ onto A, do the same for the enveloping C*-algebra B of the *-algebra generated by A and S, let the circle group act on B by fixing A and multiplying S by scalars of modulus 1, and then exploit this action to show that the natural map from B to $C^*(A, S)$ is an isomorphism. What is new here is how the desired norm-one projection of $C^*(A, S)$ onto A is shown to exist. This is taken care of in Lemmas 2 and 3 below. After that, the argument proceeds essentially as in [5].

Let A and S be as in Theorem 1. We set $p = SS^*$, so p is a projection in A strictly less than 1. The map $\sigma: A \to A$ defined by $\sigma(x) = SxS^*$ is a *-isomorphism of A with pAp, with left inverse σ^* given by $\sigma^*(x) = S^*xS$. For $k > 1$, we let
\(p_k = (S^k)(S^*)^k = a^k(1), \) so \(\{ p_k \} \) is a decreasing sequence of projections in \(A. \) Our notation for the natural left and right actions of a \(C^* \)-algebra on its conjugate space is: \((a \cdot g)(b) = g(ab), \) \((g \cdot a)(b) = g(ab). \)

Lemma 2. There is a state \(f_0 \) on \(C^*(A, S) \) whose restriction to \(A \) is faithful and which satisfies \(f_0(AS^k) = 0 \) for all \(k > 1. \)

Proof. Our assumption that \(A \) is strongly amenable implies that for any state \(g \) on a \(C^* \)-algebra \(B \) containing \(A, \) there is a state \(f \) in the \(w^* \)-closed convex hull of \(\{ u \cdot g \cdot u^* : u \) unitary in \(A \} \) which is centralized by \(A \) (i.e. \(f \cdot x = x \cdot f \) for \(x \) in \(A) \) [2]. In particular, \(A \) has a tracial state. No tracial state of \(A \) can vanish at the projection \(p; \) the left (= right) kernel of such a state would be a proper ideal containing \(pAp (= SAS^*), \) contrary to (ii). This permits us to consider the map of the set of tracial states of \(A \) into itself which sends a tracial state \(\tau \) to the tracial state \(\tau(p)^{-1}(\tau \circ \sigma). \) The Schauder fixed point theorem [7] gives us a tracial state \(\tau_0 \) of \(A \) and \(0 < r < 1 \) such that \(\tau_0 \circ \sigma = r \tau_0. \) It follows from (ii) that \(\tau_0 \) is faithful and hence, because \(1 - p \neq 0, \) we must have \(r < 1. \) Extend \(\tau_0 \) to a state \(g \) on \(C^*(A, S). \) All of the states \(u \cdot g \cdot u^* \) \((u \) unitary in \(A) \) also extend \(\tau_0. \) Using the strong amenability of \(A, \) we thus obtain a state extension \(f \) of \(\tau_0 \) to \(C^*(A, S) \) which centralizes \(A. \) Let \(K \) denote the (convex, \(w^* \)-compact) set of all such \(A \)-centralizing state extensions of \(\tau_0. \) If \(f \) belongs to \(K, \) then so does \(r^{-1}(S^* \cdot f \cdot S) \), because

\[
(S^* \cdot f \cdot S)(xY) = f(SxS^*SYS^*) = f(\sigma(x)SYS^*)
\]

\[
= f(SYS^*\sigma(x)) = (S^* \cdot f \cdot S)(Yx) \quad (Y \in C^*(A, S)).
\]

Another application of the Schauder fixed point theorem now yields a state \(f_0 \) on \(C^*(A, S) \) extending \(\tau_0, \) centralizing \(A, \) and satisfying \(f_0 = r^{-1}(S^* \cdot f \cdot S). \) This is the state we want because for \(x \) in \(A \) and \(k > 1, \) we have

\[
f_0(xS^k) = r^{-k}f_0(S^kxS^*(S^*)^k)
\]

\[
= r^{-k}f_0(xp_kS^k) = r^{-k}f_0(xS^k).
\]

Since \(0 < r < 1, \) this means that \(f_0(xS^k) = 0, \) and the lemma is proved.

Let \(B_0 \) be the \(* \)-algebra generated by \(A \) and \(S. \) Algebraic manipulations using (i) show that finite sums of the form

\[
\sum_{1}^{N} (S^*)^k x_{-k} + x_0 + \sum_{1}^{N} x_k S^k \quad (x's \ in \ A)
\]

constitute a \(* \)-algebra. (For instance, with \(k > j > 0, \) we have \((S^*)^kx_{-k}x_jS^j = (S^*)^k \cdot [(S^*)^jx_{-k}x_jS^j], \) where the factor in brackets belongs to \(A.) \) Hence every operator in \(B_0 \) can be written in the form (\(* \)).

Lemma 3. (a) There is a projection \(E: C^*(A, S) \to A \) of norm one satisfying \(E(AS^k) = 0 \) = \(E((S^*)^kA) \) for \(k > 1. \)

(b) If \(X \) in \(B_0 \) is written in the form (\(* \)), the coefficients \(x_j \) are uniquely determined by \(X \) if we require that \(x_k p_k = x_k \) and \(p_k x_{-k} = x_{-k} \) \((k > 1). \)
(c) If $\pi: A \to L(\mathcal{H})$ is a $*$-representation and \widetilde{S} in $L(\mathcal{H})$ is an isometry such that $\widetilde{S}\pi(x)\widetilde{S}^* = \pi(\sigma(x))$, then B_0 and the $*$-algebra \widetilde{B}_0 generated by $\pi(A)$ and \widetilde{S} are $*$-isomorphic (with the isomorphism sending $x \to \pi(x)$ and $S \to \widetilde{S}$).

Proof. (a) It will suffice to show that if X in B_0 is written in the form (*), then $\|X\| > \|x_0\|$. For this, consider the GNS representation (π_0, ξ_0, H_0) of $C^*(A, S)$ associated with the state f_0 of Lemma 1. Let $H_x = \pi_0(A)\xi_0$. The norm of the compression of $\pi_0(X)$ to H_x is

$$\sup\{|f_0(w^*Xy)|: w, y \in A, f_0(w^*w) < 1, f_0(y^*y) < 1\}.$$

The “zero term” of w^*Xy is w^*x_0y (since $w^*(S^*)^k = (S^*)^k\sigma^k(w^*)$ and $S^*y = \sigma^k(y)S^k$), so $f_0(w^*Xy) = f_0(w^*x_0y)$. The supremum above is therefore just the norm of the image of x_0 under the GNS representation of A arising from f_0. This is $\|x_0\|$, since f_0 is faithful, and so we have $\|X\| > \|\pi_0(X)\| > \|x_0\|$, proving part (a).

(b) This follows immediately from the observation that $E(X(S^*)^k) = x_0^k p_k$ and $E(S^kX) = p_k x_0^k (k > 1)$.

(c) Notice that the kernel of π is a σ-invariant ideal, so π is faithful by (ii). We have $\tilde{S}\tilde{S}^* = \pi(p)$, and thus $\tilde{S}\pi(x)\tilde{S}^* = \tilde{S}\pi(p)(x)\tilde{S}^* = \tilde{S}\pi(\sigma^{-1}(p))(x)\tilde{S}^* = \pi(\sigma(x))^\pi(x)$ for x in A. Everything we have proved so far about A and S is true also of $\pi(A)$ and \tilde{S}. In particular, application of (b) above to B_0 and \tilde{B}_0 shows that there is a bijective linear map $\alpha: B_0 \to \tilde{B}_0$ such that $\alpha((S^*)^kx) = (S^*)^\pi(x)$ and $\alpha(xS^k) = \pi(\sigma(x))^\pi(x)(S^k)$ for $k > 0$ and x in A. This is obviously a $*$-map, and a direct computation shows that it is multiplicative.

Proof of Theorem 1. Let B be the completion of B_0 in its greatest C^*-norm. (This makes sense because for any X in B_0 and any $*$-representation π of B_0 on Hilbert space, $\|\pi(X)\|$ does not exceed the sum of the norms of the coefficients x_j in (*).) We have a $*$-monomorphism $\theta: A \to B$, an isometry T in B (normalizing $\theta(A)$ in the same way that S normalizes A) such that $B = C^*(\theta(A), T)$, and, because of the universal property of B, a $*$-homomorphism $\pi: B \to C^*(A, S)$ such that $\pi \circ \theta = \text{id}_A$ and $\pi(T) = S$. Using part (c) of Lemma 3 and, again, the universal property of B, we obtain a homomorphism ρ from the circle group into the group of $*$-automorphisms of B such that $\rho_x(T) = \lambda T$, $\rho_x(\theta(x)) = \theta(x)$ ($|\lambda| = 1, x$ in A). Checking first on B_0 shows that the map $\lambda \to \rho_\lambda(Y)$ is norm-continuous for each Y in B. We can therefore define a norm-one projection $F: B \to \theta(A)$ by

$$F(Y) = \int_{|\lambda|=1} \rho_\lambda(Y) \, d\lambda.$$

(The reason that the range of F is precisely $\theta(A)$ is that $F(B_0) = \theta(A)$.) This projection is faithful ($F(Y^*Y) = 0$ implies $Y = 0$) and one checks readily that $\pi \circ F = E \circ \pi$, where $E: C^*(A, S) \to A$ is as in Lemma 3. It is now easy to show that π is an isomorphism. Indeed, we have $\pi(F(\ker \pi)) = E(\pi(\ker \pi)) = (0)$, and since π is injective on $F(B) = \theta(A)$, this means that $F(\ker \pi) = (0)$. But F is faithful, so $\ker \pi = 0$. Suppose finally that π' is an arbitrary $*$-representation of B. By (ii), the restriction of π' to $\theta(A)$ is faithful, so $\pi'(B)$ is generated by an isomorphic copy of A and a normalizing isometry $\pi(S)$. Using the norm-one
projection \(E' : \pi'(B) \to \pi'(\theta(A)) \) that one obtains from Lemma 3 in place of \(E \) in the argument above, we deduce that \(\pi' \) must be faithful. Hence \(C^*(A, S) \), which is isomorphic to \(B \), is simple.

The algebra \(C^*(A, S) \) is always amenable [9], hence nuclear [4] (see also [3]), but does not admit a tracial state and therefore cannot be strongly amenable. One can think of \(C^*(A, S) \) as the crossed product of \(A \) by the endomorphism \(\sigma \). Indeed, given any \("\sigma\)-covariant" pair \((\pi, \tilde{S})\) as in Lemma 3(c), that lemma and the proof of Theorem 1 ensure that \(C^*(A, S) \) and \(C^*(\pi(A), \tilde{S}) \) are isomorphic in a natural way. We remark that if \(A \) is any unital \(C^* \)-algebra, \(p \) a nonzero projection in \(A \), and \(\sigma : A \to pAp \) a *-isomorphism (should one exist), then there exists a \(\sigma \)-covariant representation of \(A \). An easy way to see this is to define \(\sigma^* : A \to A \) by \(\sigma^*(x) = \sigma^{-1}(pxp) \), note that composition with \(\sigma^* \) takes states of \(A \) to states, and use the Schauder fixed point theorem to obtain a state \(f \) of \(A \) such that \(f \circ \sigma^* = f \) (and hence \(f \circ \sigma = f \)). If \((\pi, \xi, H)\) is the GNS representation of \(A \) associated with \(f \), one checks readily that the equation \(\tilde{S}\pi(x) = \sigma(x)\xi \) defines an isometry \(\tilde{S} \) satisfying \(\tilde{S}\pi(x)\tilde{S}^* = \pi(\sigma(x)) \) for \(x \) in \(A \).

It turns out that under the hypotheses of Theorem 1, \(C^*(A, S) \) can be obtained from a crossed product of the standard sort. An explicit construction is given in [5] to show this for the situation considered there; our result below is of necessity somewhat less detailed. Here, \(\mathcal{K} \) denotes the \(C^* \)-algebra of compact operators on a separable infinite dimensional Hilbert space.

Theorem 2. Let \(A \) and \(S \) be as in Theorem 1. There exist a *-automorphism \(\theta \) of \(A \otimes \mathcal{K} \) and a projection \(Q \) in the crossed product \(C^*(A \otimes \mathcal{K}, \theta) \) such that \(C^*(A, S) \) is isomorphic to \(QC^*(A \otimes \mathcal{K}, \theta)Q \).

Proof. Let \(B = C^*(A, S) \). From the proof of Theorem 1, we know that there is a continuous action \(\rho \) of the circle group on \(B \) such that \(\rho_x(x) = x \) and \(\rho_x(S) = \lambda S \) (\(|\lambda| = 1 \), \(x \) in \(A \)). Recall that the crossed product \(C^*(B, \rho) \) of \(B \) by the action \(\rho \) is the completion in the greatest \(C^* \)-norm of \(C(T, B) \), the space of continuous \(B \)-valued functions on the circle group, considered as a *-algebra with multiplication and involution defined by

\[(FG)(\lambda) = \int_{|\mu|=1} F(\mu)\rho_{\mu}(G(\bar{\mu}\lambda)) \, d\mu \quad (F^*)(\lambda) = \rho_\lambda(F(\bar{\lambda})^*). \]

Let \(P \) in \(C(T, B) \) be the function with constant value 1. It is immediate that \(P \) is a projection, and, using the fact that \(A \) is the fixed-point algebra of \((B, \rho)\), one checks (see [10]) that \(A \) and \(PC^*(B, \rho)P \) are isomorphic via the map that sends \(x \) in \(A \) to the function in \(C(T, B) \) with constant value \(x \). We now claim that the closed two-sided ideal \(L \) of \(C^*(B, \rho) \) generated by \(P \) is all of \(C^*(B, \rho) \). For this, consider products of the form \(FPG \), where \(F \) is the function constantly equal to some given \(X \) in \(B \), and \(G(\lambda) = \rho_y(Y) \) for some \(Y \) in \(B \). The convolution formula gives \((FPG)(\lambda) = X\rho_\lambda(Y) \). In particular, if \(X = (S^*)^k \) and \(Y = yS^j \) (\(k, j > 0 \), \(y \) in \(A \)), then if \(j > k \), we have \((FPG)(\lambda) = \lambda^j(\sigma^*)^k(y)S^{j-k} \), while if \(j < k \), we obtain \((FPG)(\lambda) = \lambda^j(S^*)^{k-j}(\sigma^*)(y) \). Since \(\sigma^* \) is surjective, it follows that all functions of
the form
\[\lambda \rightarrow \lambda^{n}(S^{*})^{n}x \quad \text{or} \quad \lambda \rightarrow \lambda^{m}xS^{m} \quad (n > 0, m > 0, x \in A) \]
belong to \(L \). To show that \(m < 0 \) is also allowed here, take \(X = xS^{k} \) and \(Y = (S^{*})^{l}y \) and suppose that \(j > k \). We have
\[
(FPG)(\lambda) = X \rho_{\lambda}(Y) = \lambda^{-j}xp_{k}(S^{*})^{l-k}y \\
= \lambda^{-j}(S^{*})^{l-k}x^{j-k}(x)p_{k}y.
\]
Now as \(x \) ranges over \(A, (S^{*})^{l-k}x^{j-k}(x)p_{j} \) ranges over \((S^{*})^{l-k}p_{j-k}A_{j-k}p_{j} \) (= \((S^{*})^{l-k}Ap_{j} \)). By part (ii) of the assumption on \(A \) and \(S \), the set \(\{w, v \in A\} \) spans \(A \). (This is because \(\rho(p_{j}) = p_{j+1} \leq p_{j} \).) For \(n > 0, m < 0 \), and any \(x \in A \), the function \(\lambda \rightarrow \lambda^{m}(S^{*})^{n}x \) belongs to \(L \). A similar argument with \(j < k \) shows that the same is true of the function \(\lambda \rightarrow \lambda^{m}xS^{n} \). It now follows that for any continuous \(f: T \rightarrow \mathbb{C} \), the functions
\[\lambda \rightarrow f(\lambda)(S^{*})^{n}x \quad \text{and} \quad \lambda \rightarrow f(\lambda)xS^{n} \]
belong to \(L \). A straightforward partition-of-unity argument shows that these functions span a sup-norm dense subspace of \(C(T, B) \). But the sup-norm on \(C(T, B) \) dominates the \(L^{1} \)-norm, which in turn dominates the greatest \(C^{*} \)-norm, so \(L = C^{*}(B, \rho) \) as claimed. In other words, the “corner” \(PC^{*}(B, \rho)P \) of \(C^{*}(B, \rho) \) to which \(A \) is isomorphic is a full corner. By Corollary 2.6 of [1], then, \(A \otimes \mathbb{K} \) and \(C^{*}(B, \rho) \otimes \mathbb{K} \) are isomorphic. (Application of this result requires that \(C^{*}(B, \rho) \) have a strictly positive element. This is not a problem here. Any scalar-valued function in \(C(T, B) \) all of whose Fourier coefficients are positive is a strictly positive element of \(C^{*}(B, \rho) \).) Let \(\hat{\rho} \) be the \(\ast \)-automorphism that generates the action dual to \(\rho \) on \(C^{*}(B, \rho) \) (see [11]), and let \(\theta \) be the automorphism of \(A \otimes \mathbb{K} \) corresponding to \(\hat{\rho} \otimes \text{id}_{\mathbb{K}} \). By H. Takai’s duality theorem [11], the crossed product \(C^{*}(A \otimes \mathbb{K}, \theta) \) is isomorphic to \(B \otimes \mathbb{K} \otimes \mathbb{K} \), so \(B \) is isomorphic to \(QC^{*}(A \otimes \mathbb{K}, \theta)Q \) for an appropriate projection \(Q \) in \(C^{*}(A \otimes \mathbb{K}, \theta) \).

We conclude with a remark about KMS states for what may be termed the “natural” dynamics on \(C^{*}(A, S) \). Let \(A, S, \sigma, E, \) and \(\rho \) be as in Theorem 1 and its proof. (Regard \(\rho \) as a 2\(\pi \)-periodic action of \(\mathbb{R} \) on \(C^{*}(A, S) \): \(\rho_{\rho}(x) = x \) for \(x \) in \(A, \rho_{\rho}(S) = \exp(itS) \).) An appropriate modification of the argument in [8] shows that for \(0 < \beta < \infty \), the \(\beta \)-KMS states (if there are any) of the \(C^{*} \)-dynamical system \((C^{*}(A, S), \rho) \) are precisely those of the form \(\tau \circ E \), where \(\tau \) is a tracial state on \(A \) such that \(\tau \circ \sigma = \exp(-\beta)\tau \). (See also the last paragraph of [6].) In light of this, it would appear that the algebras we have investigated here could serve as a useful source of examples of \(C^{*} \)-dynamical systems exhibiting various sorts of unusual KMS-phenomena.

References

Department of Mathematics, University of Kansas, Lawrence, Kansas 66045